Энергия ионизации атома. Энергии ионизации

Химическая природа элемента обусловливается способностью его атома терять (отдавать) или приобретать электроны. Эта способность может быть количественно оценена энергией ионизации атома и его сродством к электрону.

Энергией ионизацииI называется количество энергии, необходимое для отрыва электрона от невозбужденного атома :

Э 0 + I ® Э + + е – или Э 0 ® Э + + е –

Энергию ионизации можно выражать в любых единицах, имеющих размерность энергии (например, в ккал/моль, в кДж/моль или эВ/атом). Чаще всего ее измеряют в электрон-вольтах. Значения энергии ионизации в эВ/атом численно равны потенциалам ионизации в В. Величина энергии ионизации восстановительной способности элемента .

Для всех периодов характерна закономерность: с увеличением заряда ядра возрастает энергия ионизации атомов (I), достигая максимума у инертного элемента. Например, для элементов 2-го периода энергия ионизации имеет следующие значения:

Э Li Be B C N O F Ne
I, эВ 5,392 9,323 8,298 11,260 14,534 13,618 17,423 21,565

Нетрудно видеть, что в периодах с ростом заряда ядра атома восстановительная способность элемента уменьшается; в периоде у каждого атома последующего элемента оторвать электрон с внешнего энергетического уровня труднее, чем у предыдущего, и наиболее трудно – у инертных газов.

Для много электронных атомов энергии ионизации I 1 , I 2 , I 3 … соответствует отрыву первого, второго, третьего и т.д. электронов. При этом всегда I 1 < I 2 < I 3 , т.к. увеличение числа оторванных электронов приводит к возрастанию положительного заряда образующегося иона. Например, для атома лития (Li)

I 1 < I 2 < I 3

На величину энергии ионизации существенное влияние оказывают два противоположных эффекта: эффект экранирования и эффект проникновения электронов к ядру.

Эффект экранирования заряда ядра обусловлен наличием в атоме между внешним электроном и ядром других электронов, которые экранируют, ослабляют воздействие на этот электрон положительного заряда ядра и тем самым ослабляют его связь с ядром. Понятно, что эффект экранирования возрастает с увеличением числа внутренних электронных слоев. Наиболее четко этот эффект проявляется в группах и подгруппах (с увеличением главного квантового числа).

Эффект проникновения электронов к ядру обусловлен тем обстоятельством, что согласно законам квантовой механики все электро-ны и даже внешние валентные определенное время могут находиться в области, близкой к ядру. Можно сказать поэтому, что внешние электро-ны проникают к ядру через слои внутренних электронов. При этом установлено, что концентрация электронной плотности у ядра (степень проникновения электронов) при одном и том же значении главного квантового числа наибольшая для s-электронов, меньше – для p-электронов, еще меньше – для d-электронов и т.д. Например, при n = 3 степень проникновения убывает в последовательности 3s > 3p > 3d.

Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Этим, в частности, определяется порядок заполнения в многоатомных атомах s-, p-, d-, f- … орбиталей при данном n.

Таким образом, вследствие более глубокого проникновения s-элек-троны в большей степени экранируют ядро, чем р-электроны, а последние сильнее, чем d-электроны и т.д.

Важным свойством элементов, которое сильно зависит от их орби-тальной конфигурации, является сродство к электрону e , представляющее собой изменение энергии, которым сопровождается присоединение электрона к нейтральному атому (к изолированному атому) с образованием отрицательного иона

Э 0 + е – ® Э – ± e.

Если присоединение к атому электрона с образованием отрицательного иона сопровождается выделением энергии, e имеет положительное значение. Если этот процесс требует затраты энергии, e – отрицательно.

Сродство к электрону выражается в тех же единицах, что и энергия ионизации, т.е. в эВ.

Наибольшим сродством к электрону обладают р-элементы VII группы. Наименьшее и даже отрицательное сродство к электрону имеют атомы с конфигурацией ns 2 (Be, Mg, Zn) и ns 2 np 6 (Ne, Ar, Kr) или с наполовину заполненным р-подслоем (N, P, As). Это служит дополнительным доказательством повышенной устойчивости указанных электронных конфигураций.

Сродство к электрону является мерой количественной оценки окислительной способности элемента .

Для всех периодов характерна закономерность: с увеличением заряда ядра возрастает сродство атомов к электрону. Видно, что в периодах с увеличением заряда ядра окислительная способность элементов увеличи-вается. Наибольшей окислительной способностью в периодической системе обладают элементы VII группы. В периоде атом каждого последующего элемента легче присоединяет электрон, чем предыдущий.

При оценке химических свойств элемента необходимо учитывать как энергию ионизации, так и сродство атома к электрону. Для сравнительной оценки восстановительных и окислительных свойств элемента введена особая характеристика, названная электроотрицательностью (ЭО).

Электроотрицательность

Электроотрицательность c это способность атома данного элемента к оттягиванию на себя электронной плотности по химическим связям по сравнению с другими элементами в соединении . Очевидно, что эта способность зависит от энергии ионизации атома и его сродства к электрону. В 1934 г. Р. Малликен показал, что электроотрицательность можно связать с величиной, являющейся средней между сродством к электрону и энергией ионизации атома, т.е. электроотрицательность c может быть выражена как полусумма его энергии ионизации и сродства к электрону:

c = 1/2(I + e) или ЭО = 1/2(I + e)

Например,

ЭО Li =1/2(5,392 + 0,59) = 2,991 эВ

ЭО F = 1/2(17,423 + 3,45) = 10,4365 эВ

В настоящее время имеется около 20 шкал электроотрицательности, в основу расчета которых положены разные свойства элементов и образуемых ими веществ. В связи с этим и в целях удобства вместо абсолютных значений электроотрицательности элементов используют значения относительной электроотрицательности (ЭОЭ). При этом электроотрицательность лития принимается за единицу, и по отношению к ней вычисляется ОЭО всех элементов. Например, элементы 2-го периода имеют следующие значения ОЭО:

Li Be B C N O F
1,0 1,5 2,0 2,5 3,0 3,5 4,0

Приведенные значения ОЭО элементов полезно запомнить, и сделать это нетрудно – у каждого последующего элемента 2-го периода значение ОЭО возрастает на 0,5.

Для всех периодов характерна закономерность: с увеличением заряда ядра атома электроотрицательность элементов возрастает, достигает максимума у галогенов .

Выводы по закономерностям в периодах.

На основании рассмотренных свойств элементов в периодах наблюдается следующие общие закономерности:

1. Уменьшаются атомные объемы (т.к. уменьшаются орбитальные радиусы).

2. Увеличиваются значения энергии ионизации, сродства к электрону и ОЭО.

3. Изменение свойств элементов происходит от ярко выраженных восстановителей (ns 1-2 – элементы) к ярко выраженным окислителям (np 5-4 – эле-менты).

4. В малых периодах (1, 2, 3) наблюдаются более резкое различие свойств элементов, чем в больших. Так, в I периоде изменение свойств от ярко выраженных восстановительных свойств к ярко выраженным окислитель-ным свойствам осуществляется в одном элементе – водороде, проявляю-щем как восстановительные, так и окислительные свойства:

Н 0 – ® Н + восстановительные свойства;

Н 0 + ® Н – окислительные свойства.

У элементов 2 периода переход восстановительных свойств к окислительным наблюдается уже на семи элементах.

В больших периодах изменение химических свойств элементов происходит более плавно. Это объясняется тем, что в больших периодах (4, 5, 6, 7) происходит заполнение внутренних энергетических уровней (d- и f- подуровней), а на внешнем энергетическом уровне у них остается один или два электрона.

Периодическая система элементов Д.И. Менделеева подразделяется на 8 групп.

Группа это вертикальный ряд элементов с одинаковым числом валентных электронов, но с различным числом энергетических уровней в атомах .

Наиболее характерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее напряжение поля, при котором скорость электронов становится достаточной для ионизации атомов, называется потенциалом ионизации атомов данного элемента и выражается в вольтах.

Энергию электрона часто выражают в электронволътах (эВ). 1 эВ - энергия, которую приобретает электрон в ускоряющем электрическом поле с разностью потенциалов IB (1 эВ = 1,6 10“ 19 Дж; в расчете на 1 моль это соответствует энергии 96,5 кДж/моль).

Энергия ионизации, выраженная в элсктронвольтах, численно равна потенциалу ионизации, выраженному в вольтах.

При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потенциале ионизации (энергия отрыва от атома первого электрона), втором потенциале ионизации (энергия отрыва второго электрона) и т.д. По мере последовательного удаления электронов от атома положительный заряд образующегося иона возрастает. Поэтому для отрыва каждого следующего электрона требуется большая затрата энергии, иначе говоря, последовательные потенциалы ионизации атома возрастают (табл. 3).

Данные табл. 3 показывают, что от атома лития сравнительно легко отрывается один электрон, от атома бериллия - два, от атома бо-

Последовательные потенциалы ионизации атомов некоторых элементов второго периода

Таблица 3

Элемент

Потенциал ионизации, В

первый

второй

третий

четвертый

пятый

Литий

Бериллий

Углерод

ра - три, от атома углерода - четыре. Отрыв же последующих электронов требует гораздо большей затраты энергии. Это соответствует нашим представлениям о строении рассматриваемых атомов. Действительно, у атома лития во внешнем электронном слое размещается один электрон, у атома бериллия - 2, бора - 3, углерода - 4. Эти электроны обладают более высокой энергией, чем электроны предшествующего слоя, и поэтому их отрыв от атома требует сравнительно небольших энергетических затрат. При переходе же к следующему электронному слою энергия ионизации резко возрастает.

Величина потенциала ионизации может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.

Рассмотрим с этой точки зрения, как изменяются первые потенциалы ионизации с увеличением атомного номера у атомов одной и той же подгруппы периодической системы (табл. 4). Как видно, с увеличением порядкового номера элемента потенциалы ионизации уменьшаются, что свидетельствует об усилении металлических и соответственно ослаблении неметаллических свойств.

Таблица 4

Первые потенциалы ионизации (в В) атомов элементов некоторых главных подгрупп

I группа

II группа

III группа

IV группа

Эта закономерность связана с возрастанием радиусов атомов, о котором говорилось в § 33. Кроме того, увеличение числа промежуточных электронных слоев, расположенных между ядром атома и внешними электронами, приводит к более сильному экранированию ядра, т.е. к уменьшению его эффективного заряда. Оба эти фактора (растущее удаление внешних электронов от ядра и уменьшение его эффективного заряда) приводят к ослаблению связи внешних электронов с ядром и, следовательно, к уменьшению потенциала ионизации.

У элементов одного и того же периода при переходе от щелочного металла к благородному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Поэтому потенциал ионизации постепенно увеличивается, а металлические свойства ослабевают. Иллюстрацией

Первые потенциалы ионизации (в В) атомов элементов второго и третьего периодов

Таблица 5

этой закономерности могут служить первые потенциалы ионизации элементов второго и третьего периодов (табл. 5).

Из данных табл. 5 видно, что общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях нарушается. Так, потенциалы ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и кислорода; аналогичное явление наблюдается и в третьем периоде при переходе от магния к алюминию и от фосфора к сере. При этом повышенные значения потенциалов ионизации наблюдаются либо у атомов с целиком заполненным внешним энергетическим подуровнем (бериллий и магний)

либо у атомов, у которых внешний энергетический подуровень заполнен ровно наполовину, так что каждая орбиталь этого подуровня занята одним электроном (азот и фосфор)

Эти и подобные факты служат экспериментальным основанием уже упоминавшегося в § 32 положения, согласно которому электронные конфигурации, соответствующие полностью или ровно наполовину занятым подуровням, обладают повышенной энергетической устойчивостью.

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоединении электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода - 1,47 эВ, фтора - 3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов большинства металлов присоединение электронов энергетически невыгодно. Сродство же к электрону атомов неметаллов всегда положительно и тем больше, чем ближе к благородному газу расположен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

В конце статьи, Вы в состоянии описать- Что такое Энергия ионизации, Определение, тенденция, Периодическая таблица и как рассчитать энергию ионизации. Давайте начнем обсуждать один за другим.

Что такое Энергия ионизации – Определение

Количество энергии (Работа) необходимо удалить один электрон из последней орбиты родительский атом, как термин энергия ионизации(т.е.).

Мы должны использовать энергию. Энергия необходима, чтобы вытащить электроны хорошо. Электроны не просто отрываются. В атомах, электроны удерживаются вместе электростатическими силами. Сила Электростатическая исходит от положительно заряженного ядра и отрицательно заряженных электронов. Так, надо что-то тянуть эти электроны прочь. Другими словами работа или энергия должна быть введена в нашу систему, чтобы вытащить этот электрон от.

Например –

Кальций (в качестве) → Как 2+ + 2е –

Кальций в нейтральном состоянии. Мы можем забрать два (или больше) электроны, чтобы сделать его кальций плюс два (в качестве 2+). Некоторые атомы могут отстраниться или может испустить более одного электрона.

  • Теперь энергия, необходимая отстраниться, что первый электрон известен как первая энергия ионизации.
  • В то время как энергия, необходимая для отстраниться, что второй электрон известен как второй т.е. и так далее.

Ионизация Периодическая таблица Энергия

Мы видим в периодической таблице, как мы идем через период энергия ионизации атома имеет тенденцию к увеличению. Эффективный заряд ядра (протоны) возрастать по мере идут слева направо.

объяснять

Для того, чтобы объяснить вид, что давайте по закону Кулона. Еще раз, Закон Кулона утверждает, что сила равна постоянная время К произведению двух зарядов, разделенных расстоянием между ними в квадрате.

  • Помните, знаменатель (р 2) уменьшается, что означает силу (F) имеет тенденцию к увеличению.
  • Увеличение заряда приводит к увеличению силы.
  • Уменьшение радиуса атома имеет тенденцию к увеличению силы.

Там существует два заряда один протоны и другие являются электронами. Мы уже говорили, что наш эффективный заряд ядра имеет тенденцию к увеличению, как мы идем слева направо.

Принимая пример, Теперь, что происходит, при переходе от лития к фтору. Фтор имеет самую высокую силу. Другими словами, протоны, найденные в ядре тянуть эти электроны на внешней электронной оболочки с большим количеством силы гораздо больше силы, чем литий (или бериллий или бор или углерод).

Это означает, что он будет требовать гораздо больше энергии, чтобы вытащить эти внешние электроны от и именно поэтому, как мы идем через период от лития до фтора энергии ионизации имеет тенденцию к увеличению. Потому что, как мы идем слева направо, у нас есть более эффективный ядерный заряд, который означает, что мы имеем большую силу.

Когда мы идем вниз по группе, атомный радиус увеличивается. Если мы вернемся к закону Кулона, если радиус атома увеличивается, что увеличивает расстояние между двумя зарядами (протоны и электроны) увеличивается. Таким образом, R также увеличивает (знаменатель увеличивается) и это означает, что наша сила меньше.

Так, как мы идем вниз к группе наша энергия ионизации имеет тенденцию к снижению.

Таким образом, в основном, тем выше энергия ионизации, тем меньше вероятность, что вы отказаться от электронов

Энергия ионизации Trend

Атомный размер или радиус

Чем больше размера атома, чем меньше т.е.. По мере увеличения размера атома, внешние электроны расположены дальше от ядра и, следовательно, оказывают меньшее притяжение к ядру и, следовательно, могут быть легко удалены.

Скрининг эффект

Чем больше число электронов в оболочке внутренней, тем больше эффект экранирования на электроны во внешнем (валентность) Таким образом, оболочка, которая испытывает меньше притяжения от ядра и, следовательно, может быть легко удалена что приводит к более низкому значению потенциала ионизации. Теперь, когда мы двигаемся вниз группа, количество внутренних оболочек возрастает и, следовательно, потенциал ионизации имеет тенденцию к снижению.

Эффект от ядерного заряда в первой энергии ионизации

Ядерный заряд определяются как чистое ядерное притяжение в направлении электронов валентной оболочки.

Более эффективный ядерный заряд, более плотно электроны удерживаются с ядром и, следовательно, больше энергии будет требоваться, чтобы удалить электрон приводит к более высокому т.е..

Эффективный заряд ядра (с эфф) = Z-S,

Если Z = ядерный заряд; S = постоянная Скрининг.

При перемещении вдоль периода заряд ядра растет при увеличении атомного номера в то время как валентной оболочки остается тем же, и, таким образом, эффективные увеличения заряда ядра, которые приводят к более высокому т.е.. Следовательно, Т.е. увеличивается в течение всего периода с некоторыми расстройствами, а именно. IE элементов 3-й группы меньше, чем 2-й группы элементов, а так же, IE группы 16 элементы меньше, чем у группы, 15 элементы.

Увеличение положительного заряда на ион увеличивает эффективный ядерный заряд, который, в свою очередь, увеличивает т.е.. С другой стороны, увеличение отрицательного заряда на ион уменьшает эффективный ядерный заряд, который в свою очередь, уменьшает т.е..

Половина заполнена и полностью заполнена электронная конфигурация

Согласно правилу Хунда, атомы, имеющие наполовину заполненной или полностью заполненные орбитали сравнительно более стабильны и, следовательно, требуется больше энергии, чтобы удалить электрон из таких атомов, приводящих к более высоким, чем то есть, как правило, ожидаемого значения.

Устройство электронов(симметричность)

Симметрия играет важную роль в первом т.е.. Если атом или ион имеет S 2 п 6 конфигурация, его чрезвычайно т.е. высока из-за наличия так называемого механизма октетов (конфигурации благородного газа). Это объясняет, почему IE 2 Ли(литий) очень очень высока по сравнению с IE 1 .

IE 3 >>> IE 2 > IE 1

Удаление с, п, г и е электроны из одной и той же оболочки

Так как S-орбитали более шкаф ядро, чем р-орбиталь той же орбиты, его электроны испытывают притяжение больше, чем у р и, следовательно, их удаление трудно что приводит к более высокой IE. В целом, т.е. следует следующий порядок S> п > d > е орбиталь той же орбиты.

s> п > d > е орбиталь той же орбиты.

Запомнить: т.е.. измеряется в единицах электрон-вольта (эВ) в расчете на атом или кДж на моль или килокалории на моль.
1 эВ / атом ккал.

Как рассчитать энергию ионизации

На самом деле, электроны удерживаются ядром атомов металла на определенном сила, называемая силой связывания. Для того, чтобы избежать электронов мы поставлять энергию для преодоления обязательной силы. Эта работа выполняется фотоном, который содержит минимум энергии будет называется пороговой энергии чтобы сломать энергию связи. Энергетический порог также известен как рабочая функция.

Энергия ионизации = функция работы + кинетическая энергия

  • Энергия E = Нч.
  • Функция работы E 0 = Нч 0
  • кинетическая энергия K.E = 1 / 2mv 2 .

  1. Если энергия падающего фотона <(меньше, чем) энергетический порог ни один электрон не будет излучаться.
  2. Если падающий фотон имеет энергию =(равный) к пороговой энергии электрона будет просто освободить от металлической поверхности.
  3. В случае, падающий фотон имеет энергию >(больше чем) пороговой энергии, чем испускают электрон будет приобретать некоторую кинетическую энергию.
  4. Кинетическая энергия электронов прямо пропорциональный на частоту удара Photon и это совершенно не зависит от интенсивности.
  5. Число электронов выбрасывается в секунду зависит от интенсивность ударной Photon, не по их частоте.

Это все об основах – Что такое Энергия ионизации, Определение, тенденция, Периодическая таблица и как рассчитать энергию ионизации.


От строения атома зависит его радиус, энергия ионизации, сродство к электрону, электроотрицательность и другие параметры атома. Электронные оболочки атомов определяют оптические, электрические, магнитные, а главное - химические свойства атомов и молекул, а также большинство свойств твердых тел.

Магнитные характеристики атома

Электрон обладает собственным магнитным моментом , который квантуется по направлению параллельно или противоположно приложенному магнитному полю. Если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины (согласно принципу Паули), то они гасят друг друга. В этом случае говорят, что электроны спаренные . Атомы, имеющие только спаренные электроны, выталкиваются из магнитного поля. Такие атомы называются диамагнитными . Атомы, имеющие один или несколько неспаренных электронов, втягиваются в магнитное поле. Они называются диамагнитными.

Магнитный момент атома, характеризующий интенсивность взаимодействия атома с магнитным полем, практически пропорционален числу неспаренных электронов.

Особенности электронной структуры атомов различных элементов отражаются в таких энергетических характеристиках, как энергия ионизации и сродство к электрону.

Энергия ионизации

Энергия (потенциал) ионизации атома E i - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением

Х = Х + + е

Ее значения известны для атомов всех элементов Периодической системы. Например, энергия ионизации атома водорода соответствует переходу электрона с 1s -подуровня энергии (−1312,1 кДж/моль) на подуровень с нулевой энергией и равна +1312,1 кДж/моль.

В изменении первых потенциалов ионизации, соответствующих удалению одного электрона, атомов явно выражена периодичность при увеличении порядкового номера атома:

При движении слева направо по периоду энергия ионизации, вообще говоря, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.

Для одного и того же атома вторая, третья и последующие энергии ионизации всегда увеличиваются, так как электрон приходится отрывать от положительно заряженного иона. Например, для атома лития первая, вторая и третья энергии ионизации равны 520,3, 7298,1 и 11814,9 кДж/моль, соответственно.

Последовательность отрыва электронов - обычна обратная последовательности заселения орбиталей электронами в соответствии с принципом минимума энергии. Однако элементы, у которых заселяются d -орбитали, являются исключениями - в первую очередь они теряют не d -, а s -электроны.

Сродство к электрону

Сродство атома к электрону A e - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона Х − :

Х − = Х + е

Наибольшим сродством к электрону обладают атомы галогенов. Например, для атома фтора присоединение электрона сопровождается выделением 327,9 кДж/моль энергии. Для ряда элементов сродство к электрону близко к нулю или отрицательно, что значит отсутствие устойчивого аниона для данного элемента.

Обычно сродство к электрону для атомов различных элементов уменьшается параллельно с ростом энергии их ионизации. Однако для некоторых пар элементов имеются исключения:

Элемент E i , кДж/моль A e , кДж/моль
F 1681 −238
Cl 1251 −349
N 1402 7
P 1012 −71
O 1314 −141
S 1000 −200

Объяснение этому можно дать, основываясь на меньших размерах первых атомов и большем электрон-электронном отталкивании в них.

Электроотрицательность

Электротрицательность характеризует способность атома химического элемента смещать в свою сторону электронное облако при образовании химической связи (в сторону элемента с более высокой электроотрицательностью). Американский физик Малликен предложил определять электроотрицательность как среднеарифметическую величину между потенциалом ионизации и сродством к электрону:

χ = 1/2 (E i + A e )

Трудность применения такого способа состоит в том, что значения сродства к электрону известны не для всех элементов.

Важным энергетическим параметром для изучения химических процессов является энергия ионизации атома. Применительно к атому водорода это энергия, которую необходимо затратить, для того чтобы оторвать электрон от протона.

Она равна сумме потенциальной энергии системы и кинетической энергии электрона.

E a = E+T= -Z . e/2 . R, (2.7)

где E a -энергия атома водорода.

Из формулы (2.7) следует, что уменьшение расстояния между электроном и ядром и увеличение заряда ядра означают увеличение силы притяжения электрона к ядру. То есть, потребуется больше энергии для отрыва электрона от ядра. Чем больше энергии требуется для разрыва этой связи, тем более стабильна система.

Следовательно, если разрушение связи (отделение электрона от ядра) в одной системе требует больше энергии, чем в другой, то первая система более стабильна.

Энергия ионизации атома - та энергия, что требуется для разрыва связей в атоме водорода, была определена экспериментально . Она равна 13,6 эВ (электронвольт). Также экспериментально была определена энергия, необходимая для отрыва электрона от ядра в атоме, состоящем из одного электрона и ядра, заряд которого в два раза больше, заряда ядра атома водорода. В этом случае необходимо затратить в четыре раза больше энергии (54,4 эВ).

Как известно из электростатики, энергия (Т ), необходимая для разрыва связи между противоположенными зарядами (Z и е ), находящимися друг от друга на расстоянии R , определяется равенством

Она пропорциональна величине зарядов и обратно пропорциональна расстоянию между ними. Такая корреляция вполне понятна: чем больше заряды, тем сильнее их притяжение друг к другу, следовательно, больше энергии требуется для разрыва связи между ними. И чем меньше расстояние между ними, тем больше энергии придется затратить на разрушение связи. Благодаря этому становится понятным, почему атомная система, где заряд ядра в два раза больше, чем заряд ядра в атоме водорода, более стабильна и требует больше энергии для отрыва электрона.

СРОДСТВО К ЭЛЕКТРОНУ частицы (молекулы, атома, иона), миним. энергия А, необходимая для удаления электрона из соответствующего отрицат. иона на бесконечность. Для частицы X С. к э. относится к процессу:

С. к э. равно энергии ионизации E отрицат. иона X - (первому потенциалу ионизации U 1 , измеряется в эВ). По аналогии с потенциалом ионизации различают первое и второе С. к э., а также вертикальное и адиабатическое С. к э. многоатомной частицы. Термрдинамич. определение С. к э.-стандартная энтальпия р-ции (1) при абс. нуле температуры:

АN А (N А ~постоянная Авогадро).

Надежных эксперим. данных по С. к э. атомов и молекул до сер. 60-х гг. 20 в. практически не существовало. В настоящее время использование равновесных методов получения и исследования отрицат. ионов позволило получить первые С. к э. для большинства элементов периодич. системы и неск. сотен орг. и неорг. молекул. Наиб. перспективные методы определения С. к э.-фотоэлектронная спектроскопия (точность + 0,01 эВ) и масс-спектрометрич. исследование равновесий ионно-молекулярных реакций. Квантовомех. расчеты С. к э. аналогичны расчетам потенциалов ионизации. Наилучшая точность для многоатомных молекул составляет 0,05-0,1 эВ.


Наибольшим С. к э. обладают атомы галогенов. Для ряда элементов С. к э. близко к нулю или меньше нуля. Последнее означает, что для данного элемента устойчивого отрицат. иона не существует. В табл. 1 приведены значения С. к э. атомов, полученные методом фотоэлектронной спектроскопии (работы У. Лайнебергера с сотрудниками).

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ , величина, характеризующая способность атома к поляризации ковалентных связей. Если в двухатомной молекуле А - В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным, чем А.
Л. Полинг предложил (1932) для количеств. характеристики электроотрицательности использовать термохим. данные об энергии связей А-А, В - В и А - В - соотв. Е АА, Е вв и Е АВ. Энергия гипотетической чисто ковалентной связи А - В (Е ков) принимается равной среднеарифметич. или среднегеометрич. значению величин E AA и Е ВВ. Если электроотрицательности атомов А и В различны, то связь А - В перестает быть чисто ковалентной и энергия связи Е АВ станет больше Е ков на величину

Чем больше различие электроотрицательностей атомов А и В, тем больше величина Используя эмпирич. ф-лу (множитель 0,208 возникает при переводе значений энергии из ккал/моль в эВ) и принимая для атома водорода произвольное значение электроотрицательности равное 2,1, Полинг получил удобную шкалу относит. числовых значений электроотрицательности, часть к-рых приведена в табл. Наиб. электроотрицателен самый легкий из галогенов - F, наименее - тяжелые щелочные металлы.
Для количеств. описания электроотрицательности, помимо термохим. данных, используют также данные о геометрии молекул (напр., метод Сандерсона), спектральные характеристики (напр., метод Горди).

АТОМНЫЕ РАДИУСЫ , эффективные характеристики атомов, позволяющие приближенно оценивать межатомное (межъядерное) расстояние в молекулах и кристаллах. Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают нек-рый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (90-98%). Атомные радиусы - величины очень малые, порядка 0,1 нм, однако даже небольшие различия в их размерах могут сказываться на структуре построенных из них кристаллов, равновесной конфигурации молекул и т.п. Опытные данные показывают, что во мн. случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов (т. наз. принцип аддитивности атомных радиусов). В зависимости от типа связи между атомами различают металлич., ионные, ковалентные и ван-дер-ваальсовы атомные радиусы.

Металлич. радиус равен половине кратчайшего расстояния между атомами в кристаллич. структуре металла. Его значение зависит от координац. числа К (числа ближайших соседей атома в структуре). Чаще всего встречаются структуры металлов с К = 12. Если принять значение атомных радиусов в таких кристаллах за 1, то атомные радиусы металлов с К, равными 8, 6 и 4, составят соотв. 0,98, 0,96 и 0,88. Близость значений атомных радиусов разл. металлов - необходимое (хотя и недостаточное) условие того, что эти металлы образуют твердые р-ры замещения. Так, жидкие К и Li (радиусы 0,236 и 0,155 нм соотв.) обычно не смешиваются, а К с Rb и Cs образуют непрерывный ряд твердых р-ров (радиусы Rb и Cs-соотв. 0,248 и 0,268 нм). Аддитивность металлич. атомных радиусов позволяет с умеренной точностью предсказывать параметры кристаллич. решеток интерметаллич. соединений.

Ионные радиусы используют для приближенных оценок кратчайших межъядерных расстояний в ионных кристаллах, предполагая, что эти расстояния равны сумме соответствующих ионных радиусов атомов. Существует неск. систем значений ионных радиусов, отличающихся для индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям в ионных кристаллах. Впервые ионные радиусы были определены в 20-х гг. 20 в. В. М. Гольдшмидтом, опиравшимся на рефрактометрич. значения радиусов F - и О 2- , равных соотв. 0,133 и 0,132 нм. В системе Л. Полинга за основу принято значение радиуса иона О 2- , равное 0,140 нм, в распространенной системе Н. В. Белова и Г. Б. Бокия радиус этого же иона принят равным 0,136 нм, в системе К. Шеннона -0,121 нм (К = 2).

Ковалентный радиус равен половине длины одинарной хим. связи X-X, где Х - атом неметалла. Для галогенов ковалентный атомный радиус - это половина межъядерного расстояния в молекуле Х 2 , для S и Se- в Х 8 , для С-в кристалле алмаза. Ковалентные радиусы F, Cl, Br, I, S, Se и С равны соотв. 0,064, 0,099, 0,114, 0,133, 0,104, 0,117 и 0,077 нм. Ковалентный радиус водорода принимают равным 0,030 нм, хотя половина длины связи Н-Н в молекуле Н 2 равна 0,037 нм. Пользуясь правилом аддитивности атомных радиусов, предсказывают длины связей в многоатомных молекулах. Напр., длины связей С-Н, С-F и С-С1 должны составлять 0,107, 0,141 и 0,176 нм соотв., и они действительно примерно равны указанным значениям во мн. орг. молекулах, не содержащих кратных углерод-углеродных связей; в противном случае соответствующие межъядерные расстояния уменьшаются.

Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Считают также, что эти радиусы равны половине межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой хим. связью, т.е. принадлежащими разным молекулам, напр. в молекулярных кристаллах. Значения ван-дер-ваальсовых радиусов находят, пользуясь принципом аддитивности атомных радиусов, из кратчайших контактов соседних молекул в кристаллах. В среднем они на ~ 0,08 нм больше ковалентных радиусов. Знание ван-дер-ваальсовых радиусов позволяет определять конформацию молекул и их упаковку в молекулярных кристаллах. Энергетически выгодными обычно бывают такие конформации молекул, в к-рых перекрывание ван-дер-ваалъсовых радиусов валентно не связанных атомов невелико. Ван-дер-ваальсовы сферы валентно связанных атомов в пределах одной молекулы перекрываются. Внеш. контур перекрывающихся сфер определяет форму молекулы. Молекулярные кристаллы подчиняются принципу плотной упаковки, согласно к-рому молекулы, моделируемые своим "ван-дер-ваальсовым окаймлением", располагаются т. обр., что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этими представлениями, можно интерпретировать кристаллографич. данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Билет 6.

Химическая связь.

Образование из атомов молекул, молекулярных ионов, ионов, кристаллических, аморфных и других веществ сопровождается уменьшением энергии по сравнению с невзаимодействующими атомами. При этом минимальной энергии соответствует определенное расположение атомов друг относительно друга, которому отвечает существенное перераспределение электронной плотности. Силы, удерживающие атомы в новых образованиях, получили обобщенное название ╚химическая связь╩. Важнейшие виды химической связи: ионная, ковалентная, металлическая, водородная, межмолекулярная.

Согласно электронной теории валентности, химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа (октет) за счет образования ионов (В. Коссель) или образования общих электронных пар (Г. Льюис).

Химическая связь характеризуется энергией и длиной. Мерой прочности связи служит энергия, затрачиваемая на разрушение связи, или выигрыш в энергии при образовании соединения из отдельных атомов (E св). Так, на разрыв связи H√H затрачивается 435 кДжмоль √1 , а на атомизацию метана CH 4 √ 1648 кДжмоль √1 , в этом случае E C√H = 1648: 4 = 412 кДж. Длина связи (нм) √ расстояние между ядрами в том или ином соединении. Обычно длина связи и ее энергия антибатны: чем больше длина связи, тем меньше ее энергия.

Химическая связь обычно изображается черточками, соединяющими взаимодействующие атомы; каждая черта эквивалентна обобщенной паре электронов. В соединениях, содержащих более двух атомов, важной характеристикой является валентный угол, образуемый химическими связями в молекуле и отражающий ее геометрию.

Полярность молекулы определяется разностью электроотрицательностей атомов, образующих двухцентровую связь, геометрией молекулы, а так же наличием неподеленных электронных пар, так как часть электронной плотности в молекуле может быть локализована не в направлении связей. Полярность связи выражается через ее ионную составляющую, то есть через смещение электронной пары к более электроотрицательному атому. Полярность связи может быть выражена через ее дипольный момент м, равный произведению элементарного заряда на длину диполя *) м = e l. Полярность молекулы выражается через ее дипольный момент, который равен векторной сумме всех дипольных моментов связей молекулы.

*) Диполь √ система из двух равных, но противоположных по знаку зарядов, находящихся на единичном расстоянии друг от друга. Дипольный момент измеряется в кулон-метрах (Клм) или в дебаях (D); 1D = 0,33310 √29 Клм.

Все эти факторы следует учитывать. Например, для линейной молекулы CO 2 м = 0, но для SO 2 м = 1,79 D вследствие ее углового строения. Дипольные моменты NF 3 и NH 3 при одинаковой гибридизации атома азота (sp 3), примерно одинаковой полярности связей N√F и N√H (ОЭО N = 3; ОЭО F = 4; ОЭО H = 2,1) и сходной геометрии молекул существенно различаются, поскольку дипольный момент неподеленной пары электронов азота при векторном сложении в случае NH 3 увеличивает м молекулы, а в случае NF 3 уменьшает его.