Презентация на тему «Ветроэнергетика. Энергия ветра. Ветроэнергетика Использование энергии ветра презентация для детей

В 2010 году суммарные мощности ветряной энергетики выросли во всём мире до 196,6 ГВт. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов. В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии - 31 %, в Северной Америке - 22 %. В 2007 году ветряные электростанции Германии произвели 6,2 % от всей произведённой в Германии электроэнергии. В 2009 году 19,3 % электроэнергии в Дании вырабатывалось из энергии ветра. В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны.

Ветроэнергетика

Ветроэнергетика, использующая ветроколеса и ветрокарусели, возрождается сейчас, прежде всего, в наземных установках. Ветер дует везде - на суше и на море. Человек не сразу понял, что

перемещение воздушных масс связано с неравномерным изменением температуры и вращением земли, но это не помешало нашим предкам использовать ветер для мореплавания.

В глубине материка нет постоянного направления ветра. Так как разные участки суши в разное время года нагреваются по-разному можно говорить только о преимущественном сезонном направлении ветра. Кроме того, на разной высоте ветер ведет себя по-разному, а для высот до 50 метров характерны рыскающие потоки.

Для приземного слоя толщиной в 500 метров энергия ветра, превращающаяся в тепло, составляет примерно 82 триллиона киловатт- часов в год. Конечно, всю ее использовать невозможно, в частности, по той причине, что часто поставленные ветряки будут затенять друг друга. В то же время отобранная у ветра энергия, в конечном счете, вновь превратится в тепло.

Среднегодовые скорости воздушных потоков на стометровой высоте превышают 7 м/с. Если выйти на высоту в 100 метров, используя подходящую естественную возвышенность, то везде можно ставить эффективный ветроагрегат.

Упряжь для ветра

Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу или электрогенератору. Чем больше диаметр ветроколеса, тем больший воздушный поток оно захватывает и тем больше энергии вырабатывает агрегат.

Принципиальная простота дает здесь исключительный простор для конструкторского творчества, но только неопытному взгляду ветроагрегат представляется простой конструкцией. Традиционная компоновка ветряков - с горизонтальной осью вращения - неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, так как на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей.

Кроме того, концы лопастей крупной установки, двигаясь с большой скоростью создают шум. Однако главное препятствие на пути использовании энергии ветра все же экономическая - мощность агрегата остается небольшой и доля затрат на его эксплуатацию оказывается значительной. В итоге себестоимость энергии не позволяет ветрякам с горизонтальной осью оказывать реальную конкуренцию традиционным источникам энергии.

По прогнозам фирмы Боинг (США) - длина лопастей крыльчатых ветродвигателей не превысит 60 метров, что позволит создать ветроагрегаты традиционной компоновки мощностью 7 МВт. Сегодня самые крупные из них - вдвое "слабее". В большой ветроэнергетике только при массовом строительстве можно рассчитывать на то, что цена киловатт-часа снизится до десяти центов.

Маломощные агрегаты могут вырабатывать энергию примерно втрое более дорогую. Для сравнения отметим, что серийно выпускавшийся в 1991 году НПО "Ветроэн" крыльчатый ветродвигатель, имел размах лопастей 6 метров и мощность 4 кВт.

Его киловатт-час обходился в 8...10 копеек.

Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатов изображены на рисунке. Они делятся на две группы:

ветродвигатели с горизонтальной осью вращения (крыльчатые) (2...5); ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

Крыльчатые

Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастей-крыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра не изменяя своего положения. Коэффициент использования энергии ветра (см. рис.) у крыльчатых ветродвигателей намного выше чем у карусельных.

В то же время, у карусельных - намного больше момент вращения. Он максимален для карусельных лопастных агрегатов при нулевой относительной скорости ветра.

Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше

трех практически не используются.

Карусельные

Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели

тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска

потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов (мультипликатор [лат. multiplicator

умножающий] -- повышающий редуктор) не эффективно из-за низкого КПД последних.

Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем "откуда дует ветер", что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

Ортогональные

Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска.

В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете (см. рис. (6)).

Самолет, прежде чем "опереться" на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию - раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.

Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14...16 м/с.

Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми - взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем можно просуммировать выходную мощность вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.

Неожиданные применения ветроустановок

Реально работающие ветроагрегаты обнаружили ряд отрицательных явлений. Например, распространение ветрогенераторов может затруднить прием телепередач и создавать мощные звуковые колебания.

Ветродвигатели могут не только вырабатывать энергию. Способность привлекать внимание вращением без расходования энергии используется для рекламы. Наиболее простой - однолопастный карусельный ветродвигатель представляет собой прямоугольную пластинку с отогнутыми краями.

Закрепленный на стене он начинает вращаться даже при незначительном ветре.

На большой площади крыльев карусельный трех-четырех лопастный ветродвигатель может вращать рекламные плакаты и небольшой генератор. Запасенная в аккумуляторе электроэнергия может освещать крылья с рекламой в ночное время, а в безветренную погоду и вращать их.

Энергия ветра - это кинетическая энергия
движущегося воздуха.
Энергию ветра относят к неисчерпаемым видам
энергии, так как она является следствием активности
Солнца.
Ветроэнергетика - отрасль энергетики,
специализирующаяся на преобразовании
кинетической энергии воздушных масс в атмосфере
в электрическую, механическую, тепловую или в
любую другую форму энергии, удобную для
использования в народном хозяйстве.

Такое преобразование может осуществляться
такими агрегатами, как ветрогенератор (для
получения электрической энергии)

Ветряная мельница (для преобразования в
механическую энергию)

Парус (для использования в транспорте)

Ветроэнергетика является бурно развивающейся
отраслью. К началу 2016 года общая установленная
мощность всех ветрогенераторов составила 432
гигаватта и, таким образом, превзошла суммарную
установленную мощность атомной энергетики.
Крупные ветряные электростанции включаются в
общую сеть, более мелкие используются для снабжения
электричеством удалённых районов. В отличие от
ископаемого топлива, энергия ветра неисчерпаема,
повсеместно доступна и более экологична.
Технический потенциал ветровой энергии России
оценивается свыше
50000 млрд кВт ⋅ч/год.
Экономический потенциал составляет примерно 260
млрд кВт⋅ч/год, то есть около 30% производства
электроэнергии всеми электростанциями России.

Наиболее перспективным эксперты считают развитие в
Крыму ветроэнергетики. Кроме уникальных природноклиматических особенностей, развитие в Крыму
ветроэнергетики возможно в связи с наличием
свободных земельных площадей, пригодных для
размещения ВЭС, а также из-за высоких экологических
требований к энергопроизводящим и
топливопотребляющим объектам, связанных с
развитием в регионе индустрии отдыха и туризма. По
мнению экспертов, использование ветровой энергии на
территории Крыма возможно по двум основным
направлениям. Во-первых, это строительство ВЭС
мощностью более 100 кВт, которые будут работать
параллельно с общей энергосистемой. Во-вторых,
строительство ветроустановок небольшой мощности
для обеспечения энергией отдельных объектов (ферм,
жилых зданий и других).

Ветрогенератор мощностью 1 МВт сокращает
ежегодные выбросы в атмосферу 1800 тонн СО2 и 4
тонн оксидов азота.

Ветрогенераторы изымают часть кинетической
энергии движущихся воздушных масс, что
приводит к снижению скорости их движения. При
массовом использовании ветряков (например, в
Европе) это замедление теоретически может
оказывать заметное влияние на локальные (и даже
глобальные) климатические условия местности.

Согласно моделированию Стэндфордского
университета, большие оффшорные
ветроэлектростанции могут существенно ослабить
ураганы, уменьшая экономический ущерб от их
воздействия.

В непосредственной близости от ветрогенератора у
оси ветроколеса уровень шума достаточно крупной
ветроустановки может превышать 100 дБ.
Как правило, жилые дома располагаются на
расстоянии не менее 300 м от ветроустановок. На
таком расстоянии вклад ветроустановки в
инфразвуковые колебания уже не может быть
выделен из фоновых колебаний.

В отличие от традиционных тепловых
электростанций, ветряные электростанции не
используют воду, что позволяет существенно
снизить нагрузку на водные ресурсы.

Запасы энергии ветра более чем в сто раз
превышают запасы гидроэнергии всех рек
планеты.

Мощность высотных потоков ветра (на высоте 7-14
км) примерно в 10-15 раз выше, чем приземных.
Эти потоки обладают постоянством, почти не
меняясь в течение года. Возможно использование
потоков, расположенных даже над
густонаселёнными территориями (например -
городами), без ущерба для хозяйственной
деятельности.

Ветряные генераторы в процессе эксплуатации не
потребляют ископаемого топлива. Работа
ветрогенератора мощностью 1 МВт за 20 лет
позволяет сэкономить примерно 29 тыс. тонн угля
или 92 тыс. баррелей нефти.

Себестоимость электричества, производимого
ветрогенераторами, зависит от скорости ветра.
При удвоении установленных мощностей
ветрогенерации себестоимость производимого
электричества падает на 15 %.

Небольшие единичные ветроустановки могут
иметь проблемы с сетевой инфраструктурой,
поскольку стоимость линии электропередачи и
распределительного устройства для подключения к
энергосистеме могут оказаться слишком
большими.
В настоящее время наиболее экономически
целесообразно получение с помощью
ветрогенераторов не электрической энергии
промышленного качества, а постоянного или
переменного тока (переменной частоты) с
последующим преобразованием его с помощью
ТЭНов в тепло, для обогрева жилья и получения
горячей воды.

Мною был сделан ветрогенератор.

Ветрогенератор состоит из двигателя постоянного
тока. Он подключен к измерительному прибору
(миллиаперметру). На электромотор надеты
лопасти.
При попадании потоков воздуха на лопасти,
приводиться в движения ротор двигателя, в
результате чего в катушках индуктивности
вырабатывается электрический ток.
При вращении стрелка прибора двигалась, а
значит, фиксировалось изменение напряжения.
Это говорит о том что изделие вырабатывает
электроэнергию.

Под термином «ветроэнергетика» подразумевают
отрасль энергетики, которая специализируется на
преобразовании кинетической энергии воздушных
масс в атмосфере в электрическую, механическую,
тепловую или в любую другую форму энергии,
удобную для использования в народном хозяйстве.
Ветроэнергетика является нерегулируемым
источником энергии. Выработка
ветроэлектростанции зависит от силы ветра -
фактора, отличающегося большим
непостоянством. Соответственно, выдача
электроэнергии с ветрогенератора в энергосистему
отличается большой неравномерностью

Большинство потенциальных преград для
использования этого вида энергии чрезмерно
пропагандируются как недостатки, которые делают
невозможным ее развитие. По сравнению с вредом,
причиняемым традиционными источниками
энергии, они незначительны:

1. Высокие инвестиционные затраты - они имеют тенденцию к
снижению в связи с новыми разработками и технологиями.
Также стоимость энергии из ветра постоянно снижается.
2. Изменчивость мощности во времени - производство
электроэнергии зависит, к сожалению, от силы ветра, на
которую человек не может повлиять.
3. Шум – исследования шума, выполненные с использованием
новейшего диагностического оборудования, не подтверждают
негативного влияния ветряных турбин. Даже на расстоянии 3040 м от работающей станции, шум достигает уровня шума фона,
то есть уровня среды обитания.
4. Угроза для птиц - в соответствии с последними
исследованиями, вероятность столкновения лопастей ветряка с
птицами не больше, чем в случае столкновения птицы с
высоковольтными линиями традиционной энергетики.
5. Возможность искажения приема сигнала телевидения незначительна.
6. Изменения в ландшафте.














1 из 13

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Энергия ветра на земле неисчерпаема. Многие столетия человек пытается превратить энергию ветра себе на пользу, строя ветростанции, выполняющие различные функции: мельницы, водяные и нефтяные насосы, электростанции. Как показала практика и опыт многих стран, использование энергии ветра крайне выгодно, поскольку, во-первых, стоимость ветра равна нулю, а во-вторых, электроэнергия получается из энергии ветра, а не за счет сжигания углеродного топлива, продукты горения которого известны своим опасным воздействием на человека.

№ слайда 3

Описание слайда:

Роторная ветроэлектрическая станция (ВЭС) Она преобразует кинетическую энергию ветрового потока в электрическую. ВЭС состоит из ветромеханического устройства (роторного или пропеллерного) , генератора электрического тока, автоматических устройств управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.

№ слайда 4

Описание слайда:

Ветроэнергетическая установка - это комплекс технических устройств для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора генератора. ВЭУ состоит из одной или нескольких ВЭС, аккумулирующего или резервирующего устройства и систем автоматического управления и регулирования режимов работы установки. Удаленные районы, недостаточно обеспеченные электроэнергией, практически не имеют другой, экономически выгодной альтернативы, как строительство ветроэлектростанций.

№ слайда 5

Описание слайда:

Ветер обладает кинетической энергией, которая может быть превращена ветромеханическим устройством в механическую, а затем электрогенератором в электрическую энергию. Скорость ветра измеряется в километрах в час (км/час) или метрах в секунду (м/с): 1 км/час = 0.28 м/с 1 м/с = 3.6 км/час.Энергия ветра пропорциональна кубу скорости ветра.Энергия ветра = 1/2 dAtS3d - плотность воздуха,A - площадь, через которую проходит воздух,t - период времени,S - скорость ветра.

№ слайда 6

Описание слайда:

Мощность (P) пропорциональна энергии ветра, проходящей через поверхность ("ометаемая поверхность") в единицу времени. Мощность ветра = 1/2 dAS3

№ слайда 7

Описание слайда:

Ветер характеризуется следующими показателями: скорость среднемесячная и среднегодовая в соответствии с градациями по величине и внешним признакам по шкале Бофорта; скорость максимальная в порыве – очень важный показатель устойчивости работы ветроэлектростанции; направление ветра/ветров – «роза ветров», периодичность смены направлений и силы ветра(рис.1); турбулентность – внутренняя структура воздушного потока, которая создает градиенты скорости не только в горизонтальной, но и в вертикальной плоскости; порывистость - изменение скорости ветра в единицу времени; плотность ветрового потока, зависящая от атмосферного давления, температуры и влажности. ветер может быть однофазной, а также двухфазной и многофазной средой, содержащей капли жидкости и твердые частицы разной крупности, движущиеся внутри потока с разными скоростями.

№ слайда 8

Описание слайда:

№ слайда 9

Описание слайда:

Использование энергии ветра В 2008 году суммарные мощности ветряной энергетики выросли во всём мире до 120 ГВт. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд. кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов. В 2007 году в Европе было сконцентрировано 61 % установленных ветряных электростанций, в Северной Америке 20 %, Азии 17 %. В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.

№ слайда 10

Описание слайда:

№ слайда 11

Описание слайда:

Ветроэнергетика в Республике Беларусь Ветроэнергетика, как и любая отрасль хозяйствования, должна обладать тремя обязательными компонентами, обеспечивающими ее функционирование:ветроэнергетическими ресурсами, ветроэнергетическим оборудованием, развитой ветротехнической инфраструктурой. 1. Для ветроэнергетики Беларуси энергетический ресурс ветра практически неограничен. В стране имеется развитая централизованная электросеть и большое количество свободных площадей, не занятых субъектами хозяйственной деятельности. Поэтому размещение ветроэнергетических установок (ВЭУ) и ветроэлектрических станций (ВЭС) обусловливается только грамотным размещением ветроэнергетической техники на пригодных для этого площадях.2. Возможности приобретения зарубежной ветротехники весьма ограничены вследствие отсутствия достаточного выбора именно того оборудования для ВЭУ и ВЭС, которое соответствует климатическим условиям Беларуси, а также мощного противодействия ответственных административных работников от официальной энергетики.3. Отсутствие инфраструктуры по проектированию, внедрению и эксплуатации ветротехники и, соответственно, практического опыта и квалифицированных кадров можно преодолеть только в ходе активного сотрудничества с представителями развитой ветроэнергетической инфраструктуры зарубежья.

№ слайда 12

Описание слайда:

№ слайда 13

Описание слайда:

Ветры, формирующиеся в континентальной местности и северных широтах, характеризуются резкими порывами и частой сменой направлений, отличаются от довольно спокойных ветров европейского морского побережья (Нидерланды, Германия). Структура ветра меняется в зависимости от высоты над земной поверхностью, при этом стабильность воздушного потока увеличивается в высоких слоях воздуха. Различие в темпераменте ветров требует определенного конструктивного подхода при создании ветростанции. Предлагаемое решение является универсальным для ветров любых направлений и скоростей, включая штормовые ветра.

1 Возобновляемые источники энергии. ВЕТРОЭНЕРГЕТИКА. БЕЛЬСКИЙ Алексей Анатольевич Научный руководитель: д.т.н., проф. АБРАМОВИЧ Борис Николаевич Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт Им. Г.В. Плеханова (технический университет)


2 Ветроэнергетика в России Русские ученные являются первопроходцами и создателями теорий описывающих использование энергии ветра. Теорию идеального ветряка впервые разработал в 1914 г. В.П. Ветчинкин на основе теории идеального гребного винта. В этой работе он установил понятие коэффициента использования энергии ветра идеальным ветряком. В 1920 г. проф. Н.Е. Жуковский изложил теорию «Ветряной мельницы НЕЖ». Теория идеального ветряка проф. Н. Е. Жуковского носит название классической теории; она устанавливает, что максимальный коэффициент использования энергии ветра идеальным ветряком равен 0,593. С точки зрения практического применения, теория идеального ветряка наиболее полно, изложена проф. Г.X. Сабининым, согласно которой коэффициент использования энергия ветра идеальным ветряком равен 0,687. Исследования показывают, что Россия обладает самым высоким в мире ветропотенциалом. В европейской части РФ КИУМ станций можно довести до 30%, а в районах Крайнего Севера – до 40%. Около 30% потенциала ветроэнергетики России сосредоточено на Дальнем Востоке, 16% - в Сибири, 14% - в районах Севера и менее, чем 25% в остальных регионах (в районах Нижней и Средней Волги и Каспийского моря, Карелии, Алтая и пр.).


6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 " title="3 Метеостанция Закрытая местностьОткрытая местностьМорской берегОткрытое мореХолмы и горы >6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 " class="link_thumb"> 3 3 Метеостанция Закрытая местностьОткрытая местностьМорской берегОткрытое мореХолмы и горы >6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 "> 6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 "> 6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 " title="3 Метеостанция Закрытая местностьОткрытая местностьМорской берегОткрытое мореХолмы и горы >6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 "> title="3 Метеостанция Закрытая местностьОткрытая местностьМорской берегОткрытое мореХолмы и горы >6,0 м/с>7,5 м/с>8,5 м/с>9,0 м/с>11,5 м/с 5,0-6,06,5-7,57,0-8,58,0-9,010-11,5 4,5-5,05,5-6,56,0-7,07,0-8,08,5-10 3,5-4,54,5-5,55,0-6,05,5-7,07,0-8,5 ">


4 ГОСТ Р «Нетрадиционная энергетика. Ветроэнергетика. Классификация.» ГОСТ Р «Нетрадиционная энергетика. Ветроэнергетика. Термины и определения.» ГОСТ Р «Нетрадиционная энергетика. Ветроэнергетика. Установки ветроэлектрические. Требования к испытаниям.»


5 ГОСТ Р «Нетрадиционная энергетика. Ветроэнергетика. Классификация.» ВЭУ классифицируют: - по виду вырабатываемой энергии (механические и электрические); - по мощности (большой мощности свыше 1 МВт; средней мощности от 100 кВт до 1 МВт; малой мощности от 5 до 99 кВт; очень малой мощности менее 5 кВт); - по областям применения; - по назначению (автономные, гибридные, сетевые); - по признаку работы (с постоянной или переменной частотой вращения ветроколеса); - по способам управления (регулирование управлением ветроколесом, балластное сопротивление, преобразователем частоты); - по структуре системы генерирования энергии (тип генератора).






8 Способы ориентации по ветру Автоматический установ Ветроколеса на ветер осуществляется следующими четырьмя способами: 1)хвостом, действующим аналогично флюгеру; 2) виндрозами, действующими па поворотную часть ветряка через зубчатую передачу; 3) расположением вет­роколеса позади башни ветряка по принципу установи на ветер хвостом; 4) установ на ветер электромотором.


9 1.Лопасть 2.Ротор 3.Механизм поворота лопастей 4.Тормозное устройство 5.Тихоходный вал 6.Мультипликатор 7.Генератор (СМПЧ или АМДП) 8.Контроллер 9.Анемометр 10.Флюгер 11.Гондола 12.Быстроходный вал 13.Редуктор поворота гондолы 14.Двигатель поворота гондолы 15.Башня Устройство современной ветроэлектрической установки (ВЭУ) мощностью от 100кВт




11 Мощность ВЭУ P в =f(V) где P в – мощность на валу мультипликатора (кВт), R – радиус ветроколеса (м), r – радиус ступицы ветроколеса (м), ρ – плотность воздуха (кг/м3), ν – скорость ветра (м/с), ξ – коэффициент использования энергии ветра, η м – КПД мультипликатора.








15 Варианты гибридных комплексов ВЭУ и ДЭС (ВДУ) ВДУ в которых ВЭУ работает параллельно с ДЭС ВДУ с «отключающейся» ДЭС Блок-схема ВДУ в которых ВЭУ работает параллельно с ДЭС Блок-схема ВДУ с «отключающейся» ДЭС Доля участия ВЭУ в выработке энергии до 70-85%. Уровень достигаемой экономии топлива 65-90% от общего. Количество вредных выбросов от ДЭС сокращается на 40-70%. Доля участия ВЭУ в выработке энергии до 25%. Уровень достигаемой экономии топлива 20-30% от общего.


Комплекс предназначен для электроснабжения объектов, расположенных в зонах со средними и сильными ветрами. Обеспечивает потребителей качественной электроэнергией (220В 50Гц) со средним потреблением до 600 кВтч в месяц (при средних ветрах 4,5 м/с). Состав: Ветрогенератор "Бриз 5000" Кабель 70 м Регулятор заряда с балластным сопротивлением и эл. тормозом Инвертор 96В/220В, 50 Гц Аккумуляторные батареи Мачта Ветроэлектростанция «Бриз-Лидер»


Комплекс предназначен для гарантированного электроснабжения объектов, расположенных в зонах со средними и слабыми ветрами. Обеспечивает потребителей качественной электроэнергией (220В, 50Гц). Состав: Ветрогенератор "Бриз 5000« с кабелем 70 м Регулятор заряда с балластным сопротивлением и эл. тормозом Инвертор 96В/220В, 50 Гц Блок оптимизации нагрузки дизеля и дизель – генератор Блок управления Аккумуляторные батареи Мачта Ветродизельный комплекс «Бриз-Дизель+»



19


20


21


К 2020 году доля ветроэнергетики в производстве электроэнергии достигнет 10%. Мировая практика эксплуатации сетевых ветроэлектростанций показывает, что точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке на день вперед превышает сегодня 95%. Начиная с 1980 г. установленная мощность ветровых турбин в ЕС выросла в 290 раз, а стоимость генерации за тот же период снизилась на 80%. Появление каждых 5 % доли ВЭС на рынке электроэнергии приводит к снижению оптовых цен на 1% (анализ рынков электроэнергии Северной Германии и Дании). 1% роста энергетики на ВИЭ дает дополнительный рост ВВП на 1,5%. Современные ВЭУ, подключенные к энергосистеме, работают с коэффициентом использования установленной мощности от 0,15 до 0,37. Электростанции на не возобновляемых источниках энергии работают с коэффициентом от 0,4 до 0,8. В 2008 году коэффициент использования установленной мощности всех электростанций России составил 0,5. Шум от современной ВЭУ на расстоянии 200 м равен шуму холодильника на кухне. 22 Мировая ветроэнергетика


23 Мировая ветроэнергетика 1,5 MW2,5 MW3,6 MW5,4 MW A 3800 m 2 70 m A 5000 m 2 80 m A 8500 m m A m m