Классическая теория теплоемкостей. Внутренняя энергия и теплоемкости идеального газа. Классическая теория теплоемкостей Внутренняя энергия 1 моля газа

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q , необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c .

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V молярная теплоемкость в изохорном процессе (V = const) и C p молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT . Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

В частности, это отношение входит в формулу для адиабатического процесса.

Между двумя изотермами с температурами T 1 и T 2 на диаграмме (p , V ) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T 2 – T 1 одинаково, следовательно, одинаково изменение ΔU внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими . Все изопроцессы являются политропическими. В случае изотермического процесса ΔT = 0, поэтому C T = ∞. В адиабатическом процессе ΔQ = 0, следовательно, C ад = 0.

Следует отметить, что «теплоемкость», как и «количество теплоты» – крайне неудачные термины. Они достались современной науке в наследство от теории теплорода , господствовавшей в XVIII веке. Эта теория рассматривала теплоту как особое невесомое вещество, содержащееся в телах. Считалось, что оно не может быть ни создано, ни уничтожено. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Теория теплорода несостоятельна. Она не может объяснить, почему одно и то же изменение внутренней энергии тела можно получить, передавая ему разное количество теплоты в зависимости от работы, которую совершает тело. Поэтому лишено физического смысла утверждение, что «в данном теле содержится такой-то запас теплоты».

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T :

При изменении температуры на ΔT внутренняя энергия изменяется на величину

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

На рис. 3.10.2 изображена модель двухатомной молекулы. Молекула может совершать пять независимых движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y . Опыт показывает, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких температурах. При обычных температурах вращение около оси Z не происходит, так же как не вращается одноатомная молекула. Каждое независимое движение называется степенью свободы . Таким образом, одноатомная молекула имеет 3 поступательные степени свободы, «жесткая» двухатомная молекула имеет 5 степеней (3 поступательные и 2 вращательные), а многоатомная молекула – 6 степеней свободы (3 поступательные и 3 вращательные).

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы :

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа C p и C V и их отношение γ могут быть записаны в виде

Для газа, состоящего из двухатомных молекул (i = 5)

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени свободы. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT , а на один атом – 3kT . Внутренняя энергия 1 моля твердого вещества равна:

Это соотношение называется законом Дюлонга–Пти . Для твердых тел практически не существует различия между C p и C V из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3R . Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением. Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.

Свойства одноатомных газов определяются кинетической энергией поступательного движения молекул. Внутренняя энергия атома не сказывается на термодинамике газа. Очевидно, учет внутренней энергии атома может стать нужным лишь в тех случаях, когда газ находится при очень высокой температуре и когда столкновения атомов могут привести к их возбуждению и. ионизации. Об этих процессах в свое время у нас будет подробная речь.

Таким образом, весьма широкую применимость будет иметь формула внутренней энергии одноатомного газа

где число молекул. Воспользовавшись формулами предыдущего параграфа, получим для I моля идеального одноатомного газа выражение

Отсюда для теплоемкостей 1 моля одноатомного газа получим по формулам, приведенным в § 60:

Прямая пропорциональность температуре внутренней энергии и соответственно постоянство теплоемкостей одноатомного газа имеют место в довольно широком интервале внешних условий.

У многоатомных газов такая простая картина если и имеет место, то в значительно более узком интервале температур. Причина заключается в том, что энергия многоатомной молекулы складывается из энергии поступательного движения, энергии вращения и энергии колебания частей молекулы (т. е. атомов, из которых она построена) друг по отношению к другу. Подсчет средней энергии, приходящейся на молекулу довольно сложным. Оказывается, что энергия молекулы уже не будет линейно зависеть от температуры и соответственно теплоемкость газа уже не будет постоянной, не зависящей от величиной. Все же обычно удается найти узкий интервал температур, внутри которого теплоемкость газа не зависит от температуры. Это имеет место при таких значениях

температуры, при которых средняя энергия молекулы еще недостаточна для того, чтобы соударения молекулы могли привести к изменению ее колебательного состояния, и в то же время эта энергия достаточно велика, чтобы не чувствовался дискретный (квантовый) характер энергии вращения. Забегая вперед и отсылая читателя к рис. 266 (стр. 577), можно сказать, что линейный ход энергии с температурой и постоянство теплоемкости будут иметь место в том случае, если величина характеризующая по порядку величины энергию поступательного движения молекулы, существенно больше расстояния между вращательными уровнями энергии и меньше расстояния между колебательными уровнями энергии.

Если такой интервал существует, то энергия моля газа и его теплоемкости выражаются следующими простыми формулами:

Возрастание внутренней энергии и вдвое по отношению к одноатомному газу можно толковать следующим образом. У многоатомной молекулы шесть степеней свободы, в то время как у одноатомной - три. Увеличение вдвое числа степеней свободы влечет за собой увеличение вдвое внутренней энергии. Конечно, в этом утверждении нет ничего само собой разумеющегося. Однако мы находим подтверждение этой точке зрения, рассматривая газ двухатомных молекул.

Температура – это количественная мера нагретости тел. Она измеряется при помощи термометра и выражается в градусах Цельсия (?C). Температура тела зависит от скорости движения молекул.


Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела. Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов и не зависит от механического положения тела и его механического движения. При повышении температуры внутренняя энергия тела увеличивается.


Внутренняя энергия тела изменяется в процессе теплопередачи и при совершении работы.

Изменение внутренней энергии тела без совершения работы называется теплопередачей . Теплопередача всегда происходит в направлении от тела с большей температурой к телу с меньшей температурой. Существует три вида теплопередачи.

Теплопроводность – перенос энергии от одного тела к другому. При этом вещество не перемещается, переносится только энергия. Теплопроводность зависит от рода вещества. Скорость передачи энергии пропорциональна разности температур.

Конвекция – это перенос энергии потоками жидкости или газа. Конвекция объясняется действием силы Архимеда. Вещество, нагретое сильнее, имеет меньшую плотность и перемещается под действием этой силы относительно менее нагретого вещества.

Третий способ передачи энергии – излучение . Он возможен и в вакууме. Энергию излучают все нагретые тела. Чем выше температура, тем сильнее тепловое излучение.



Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты Q. Количество теплоты зависит от массы тела, рода вещества и изменения температуры тела. Количество теплоты измеряется в джоулях (Дж).

Физическая величина, равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура увеличилась на 1 ?C, называется удельной теплоемкостью вещества c. Таким образом,


Физическая величина, показывающая, какое количество теплоты выделяется при сгорании одного килограмма топлива, называется
удельной теплотой сгорания q.

Q=qm

Закон сохранения и превращения энергии.

Механическая и внутренняя энергия могут переходить от одного тела к другому. Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется

Термодинамический процесс - любое изменение в термодинамической системе, приводящее к изменению хотя бы одного из ее термодинамических параметров. Термодинамическое равновесие - такое состояние макроскопической системы, когда ее термодинамические параметры не изменяются с течением времени. Равновесные процессы - процессы, которые протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало.

Изопроцессы - это равновесные процессы, при которых один из основных параметров состояния сохраняется постоянным.

Изобарный процесс - процесс, протекающий при постоянном давлении (в координатах V,t (он изображается изобарой ).

Изохорный процесс - процесс, протекающий при постоянном объеме (в координатах p,t он изображается изохорой ). Изотермический процесс - процесс, протекающий при постоянной температуре (в координатах p,V он изображается изотермой ).

Адиабатический процесс - это процесс, при котором отсутствует теплообмен между системой и окружающей средой (в координатах p,V он изображается адиабатой ).

Постоянная (число) Авогадро - число молекул в одном моле N A =6.022 . 10 23 .

Нормальные условия : p = 101300 Па, Т = 273.16 К.

Опытные законы идеального газа

Закон Бойля-Мариотта: при T=const, m=const pV = const (изотермический процесс

Закон Гей-Люссака: при p=const, m=const V=V o aT (изобарный процесс ,), при V=const, m=const p=p o aT (изохорный процесс ).

Закон Авогадро: моль любого газа при одинаковой температуре и давлении занимает одинаковый объем V m (при нормальных условиях V m = 22.41 . 10 -3 м 3 )

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)

Функциональная связь между давлением, объемом и температурой называется уравнением состояния . Для идеального газа, используя законы Бойля-Мариотта, Гей-Люссака и Авогадро, можно получить:

уравнение Клапейрона-Менделеева для одного моля газа pV m = RT, (1a)

где R = 8.31 Дж/моль. К - газовая постоянная (она находится после подстановки в последнее уравнение нормальных условий)

уравнение Клапейрона-Менделеева для произвольной массы газа pV =(m/M)RT = nRT, (1b)

где М - масса одного моля (молярная масса), n = m/M - количество вещества.

Можно ввести постоянную Больцмана k = R/N A = 1.38 . 10 -23 Дж/К и тогда уравнение Клапейрона-Менделеева имеет вид p = nkT,

где n = N A /V m - число молекул в единице объема (концентрация молекул), т.е. при одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул (в 1 м 3 при нормальных условиях содержится

N L = 2.68 . 10 25 молекул - число Лошмидта ).

Основное уравнение молекулярно-кинетической теории идеальных газов выводится в предположении, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие.

p = (1/3)nm 2 ,

где n = N/V - концентрация молекул газа, N - число молекул газа, V - объем газа, = [(1/N)v i 2 ] 1/2 - среднеквадратичная скорость молекул, v i - скорость i-молекулы, m - масса одной молекулы.

Суммарная кинетическая энергия поступательного движения всех молекул газа

E = N и, следовательно, уравнение p = (1/3)nm 2 можно записать в виде pV = (2/3)E.

Для средней кинетической энергии поступательного движения одной молекулы идеального газа

= 3kT/2.

Таким образом, термодинамическая температура Т является мерой средней кинетической энергии поступательного движения молекул идеального газа и формула раскрывает молекулярно-кинетическое толкование температуры.

Внутренняя энергия U - энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т.д.) и энергия взаимодействия этих частиц. К внутренней энергии не относится кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях. Внутренняя энергия - однозначная функция термодинамического состояния системы , т.е. в каждом состоянии система обладает вполне определенной (единственной) энергией. Внутренняя энергия не зависит от того, как система пришла в данное состояние: при переходе из состояния (1) в состояние (2) изменение внутренней энергии DU определяется только разностью значений внутренней энергии этих состояний DU = U 1 - U 2 и не зависит от пути перехода.


Внутренняя энергия 1 моль идеального газа равна сумме кинетических энергий N A молекул

U m = ikTN A = iRT/2,

и изменение внутренней энергии 1 моль идеального газа dU m =(iR/2)dT

(молекулы между собой не взаимодействуют и поэтому взаимная потенциальная энергия молекул газа равна нулю).

Внутренняя энергия произвольной массы m идеального газа

U = (m/M)(iRT/2)=n(iRT/2), где М - молярная масса (масса одного моля) ,

n = m/M - количество вещества.

Первое начало термодинамики:

Внутренняя энергия идеального газа может изменяться либо в результате совершения над системой работы, либо сообщением ей теплоты. Иными словами, имеются две формы передачи энергии от одних тел к другим: работа и теплота. Энергия механического движения может превращаться в энергию теплового движения, и наоборот . При этих превращениях соблюдается закон сохранения энергии: теплота Q, сообщаемая системе, расходуется на изменение ее внутренней энергии DU и на совершение ею работы А против внешних сила (первое начало термодинамики )

Q = DU + A,

где DU - изменение внутренней энергии системы , Q - количество полученной системой теплоты (считается, что Q > 0, если теплота подводится к системе, и Q < 0, если система отдает теплоту), А - работа системы над внешней средой (считается, что A>0, если система совершает ее против внешних сил и A<0, если над системой внешними силами совершается работа). В СИ количество теплоты Q выражается в джоулях [Дж].

При передаче бесконечно малого количества теплоты закон сохранения энергии (первое начало термодинамики) имеет вид dQ = dU + dA, (3b)

где dU - бесконечно малое изменение внутренней энергии системы (полный дифференциал), dA - элементарная работа , dQ - бесконечно малое количество теплоты.

Первое начало термодинамики формулируют еще и так: нельзя построить периодически действующий двигатель, который совершал бы работу большую, чем та энергия, которая подводится к двигателю извне (такой двигатель называется вечным двигателем первого рода, и невозможность создания вечного двигателя первого рода является одной из формулировок первого начала термодинамики ).

Работа газа при изменении его объема

Если газ, расширяясь, двигает поршень на расстояние dl, то он совершает над поршнем работу

dA = Fdl = pSdl = pdV,

где S - площадь поршня, dV = Sdl - изменение объема системы


Как отмечалось в § 4.1, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия

идеального газа представляет собой только сумму значений кинетической энергии хаотического движения всех его молекула

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением (4.8): то внутренняя энергия одного моля одноатомного идеального газа выразится формулой где - постоянная Авогадро. Если учесть, что то получим

Для произвольной массы одноатомного идеального газа имеем

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одноатомного при той же температуре:

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле


Определение. Внутренней энергией какого-либо тела называется энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Она является функцией внутреннего состояния системы. Для идеального газа внутренняя энергия состоит из суммы энергий поступательного, вращательного и колебательного движений молекул . (Заметим, что в общем случае во внутреннюю энергию входят энергия взаимодействия атомов, энергия электронных оболочек, внутриядерная энергия и др.). Внутреннюю энергию одного моля идеального газа найдём, умножив число Авогадро на среднюю энергию одной молекулы:

Учитывая, что , получим:

т.е. внутренняя энергия идеального газа является функцией температурыи пропорциональна ей, а также зависит от числа степеней свободы молекул . То, что внутренняя энергия является функцией состояния системы, означает, что всякий раз, когда система оказывается в данном состоянии, ее внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе системы из одного состояния в другое будет всегда равно разности значений внутренней энергии в этих состояниях, независимо от пути, по которому совершался переход .

Свяжем внутреннюю энергию с теплоёмкостью. По определению теплоёмкость в процессе при постоянном объёме , для идеального газа

Соответственно

3 . Основное уравнение молекулярно-кинетической теории.

Постановка задачи . Требуется получить связь между макропараметрами – давлением P, температурой T, с микропараметрами – массой молекулы m , её скоростью и концентрацией молекул n .

Пусть имеется некоторый сосуд с газом. Будем считать, что молекулы могут двигаться вдоль осей x, y, z. Выберем на стенке сосуда участок поверхности (Рис. 7.2). Если в сосуде N молекул, то вследствие равновероятности этих направлений вдоль каждой оси будет двигаться

произведению плотности молекул (где объём сосуда) на объём , т.е. число молекул, летящих к площади

По закону сохранения импульса каждая молекула при ударе о стенку передаёт ей импульс (удар считается упругим), равный изменению импульса молекулы (Рис. 7.3, а, б ).

По 2-му закону Ньютона:

, (3)

где сила, действующая со стороны молекулы на стенку; длительность взаимодействия молекулы со стенкой.

Для всех молекул, находящихся в параллелепипеде:

.

Поделив правую и левую части на , учитывая, что

по определению давления и производя необходимые сокращения, получим или .

Если в выводе учесть, что скорости отдельных молекул могут быть различными, то величину следует заменить средней величиной квадрата скорости .

А так как средняя энергия поступательного движения молекулы

Физический смысл уравнения: давление, оказываемое газом на стенки сосуда прямо пропорциональна числу молекул в единице объёма и средней кинетической энергии поступательного движения одной молекулы.

4 . Уравнение состояния идеального газа Клапейрона-Менделеева

(Клапейрон (1799 – 1864) – французский физик и инженер; Менделеев Дмитрий Иванович (1834 – 1907) – великий русский учёный). Опыт даёт, что при небольших плотностях газы подчиняются уравнению (Клапейрона):

В соответствии с законом Авогадро моли всех газов занимают при одинаковых условиях одинаковый объём.

Отсюда const будет одинакова для всех газов, если количество равно 1 молю. Обозначив const=R , получим (Менделеев):

Уравнение состояния идеального газа для одного моля, где газовая постоянная , а - объем 1 моля газа.

Если у нас имеется молей, то объём будет , , подставим в уравнение состояния для 1-го моля.