". Лекция на тему "ассимиляция, диссимиляция." Световая фаза фотосинтеза

Краткое содержание главы

1. Клетка является элементарной структурной единицей живой материи. Все организмы, кроме вирусов, состоят из клеток.

2. Несмотря на большое разнообразие клеток (прокариотических, эукариотических), все они сходны между собой, что свидетельствует об универсальности их структуры, процессов жизнедеятельности и функций в природе, а следовательно, и о единстве происхождения живой материи.

3. Состав химических элементов в клетке сходен с их составом в оболочках Земли. Химические элементы в клетке присутствуют в виде ионов различных неорганических веществ (вода, минеральные соли, кислоты, кислород, углекислый газ) и органических веществ.

4. Для клеток живых организмов характерно большое содержание органических веществ, среди которых преобладают четыре группы - углеводы, липиды, белки и нуклеиновые кислоты. Органические вещества в клетках присутствуют в виде полимеров (макромолекулы полисахаридов, белков, нуклеиновых кислот) и неполимерных веществ (липиды, аминокислоты, азотистые основания, моно- и дисахариды, нуклеотиды, АТФ и др.).

5. В живой клетке постоянно совершается обмен веществ (метаболизм). Он включает два взаимосвязанных процесса: ассимиляцию и диссимиляцию. Совокупность их химических реакций обеспечивает синтез новых соединений, необходимых для жизнедеятельности клетки, и расщепление уже имеющихся или поступающих веществ, сопровождающееся выделением энергии, которая необходима для осуществления синтетических процессов.

6. Метаболизм реализует связь клетки с окружающей средой: из внешней среды она получает энергию (в виде энергии солнечного света или с пищей) и минеральные вещества, во внешнюю среду выделяет конечные продукты обмена.

7. В процессе эволюции в осуществлении всех процессов жизнедеятельности клетки (реакций обмена веществ, процессов роста, развития, размножения) установилось согласованное взаимодействие между всеми её частями и внутриклеточными структурами. Это взаимодействие характеризуют строгая упорядоченность внутриклеточных структур, чёткое разграничение функций между ними, наличие и размещение определённых ферментов, обеспечивающих регуляцию всех процессов. Это обусловливает целостность клетки и позволяет рассматривать её как особую живую систему - биосистему клеточного уровня организации жизни.

8. В основе всех форм размножения лежит деление клетки. Клетки прокариот (бактерий) размножаются простым делением надвое. Размножение клеток эукариот (растений, грибов, животных) происходит более сложно: вначале осуществляется деление ядра на две равнозначные части, а затем – деление цитоплазмы.

9. Наследственная информация о свойствах и признаках организмов заключена в молекулах ДНК: у бактерий в одной кольцевой молекуле ДНК (условно называемой «хромосомой»), у эукариот - в линейных молекулах ДНК, совместно со специфическими белками образующих хромосомы. Нуклеоид прокариот находится в цитоплазме, а хромосомы эукариот - в ядре клетки.

10. В клеточном цикле важную роль играет интерфаза, в процессе которой происходит удвоение хромосом - носителей наследственной информации.

11. Процесс деления клетки надвое, во время которого происходит равнозначная передача её наследственных свойств дочерним поколениям, обеспечивает непрерывность жизни на Земле.

Подведём итоги

Что вы узнали из материалов главы 2 «Явления и закономерности жизни на клеточном уровне»?

Проверьте себя самостоятельно

1. Какова причина того, что структура и свойства клетки были открыты лишь в XIX-XX вв.?

2. Обоснуйте необходимость знаний о клетке в повседневной жизни.

3. Каковы основные структурные компоненты клетки?

4. Охарактеризуйте важнейшие процессы жизнедеятельности клетки.

5. Докажите, что клетка - биосистема и организм.

6. Почему формулирование клеточной теории ускорило исследование клетки?

7. Как клетка образует органические вещества?

8. В каких процессах жизнедеятельности клетки участвует АТФ?

9. Что обозначают термином «комплементарность»?

10. Охарактеризуйте процесс репликации.

11. Назовите функции различных типов РНК в клетке.

12. Какую роль в клетке играет вода?

13. Что служит матрицей для синтеза иРНК?

14. Из каких этапов состоит клеточный цикл?

15. Какова биологическая роль интерфазы в жизни клетки?

Выполните задания

A. Сформулируйте правильный ответ.

1. Процесс первичного синтеза глюкозы происходит

а) в ядре

б) хлоропластах

в) рибосомах

г) лизосомах

2. В ядре информация о последовательности аминокислот с молекулы ДНК переносится на молекулу

а) рРНК

б) тРНК

в) иРНК

г) АТФ

3. Расхождение хроматид к полюсам клетки в процессе митоза происходит

а) в анафазе

б) телофазе

в) профазе

г) метафазе

Б. Уберите лишний термин.

Фотолиз, клеточный цикл, интерфаза, митоз.

Диссимиляция, ассимиляция, фотосинтез, хлоропласт.

Мономер, полимер, ДНК, белок.

ДНК, РНК, репликация, ферменты.

B. Исправьте ошибку в утверждении.

Транскрипция завершает процесс синтеза белка в клетке.

В цитоплазме находятся органоиды, митохондрии и хлоропласты.

Обсудите проблему

1. Почему клетки прокариот, возникшие на Земле ранее других организмов и сохранившие черты примитивности своего строения, существуют на нашей планете и поныне?

2. Каким образом осуществляется управление процессами жизнедеятельности клетки?

Выскажите своё мнение

В чём ценность биологических знаний для личности и для общества?

Ваша позиция

Способствует ли знание строения и свойств клетки пониманию общих законов и закономерностей жизни?

Проведите наблюдения и сделайте вывод?

Учимся создавать проекты, модели, схемы

Подготовьте презентацию к докладу на тему «Размножение клеток прокариот и эукариот».

Выполните динамическую модель митоза для школьного кабинета биологии. Сделайте эскиз предполагаемой модели, подберите материал для её выполнения. Раскрасьте модель красками.

Темы проектов для выполнения в группе

Создание динамической модели биосинтеза белка в клетке.

Выполнение проекта-презентации с рисунками и объяснительным текстом на тему «Биологическое разнообразие одноклеточных эукариот».

Создание иллюстрированного атласа или электронного справочника на тему «Опасные и полезные бактерии».

Науку, изучающую клетку, называют цитологией (греч. kytos - grjf «клетка», «вместилище» и logos - «учение»). Цитология исследует состав, строение и функции клеток многоклеточных и одноклеточных организмов. Эта наука ведёт свою историю с середины XIX в., но корни её уходят в XVII в. Развитие знаний о клетке во многом связано с усовершенствованием технических устройств, позволяющих её рассмотреть и изучить.

Центромера - небольшое фибриллярное тельце, осуществляющее первичную перетяжку хромосомы. Это важнейшая часть хромосомы, так как определяет её движение при митозе. Хромосома, лишённая центромеры, не способна совершать упорядоченное движение и может затеряться. Обычно центромера хромосомы занимает определённое место. Это служит одним из признаков, по которому различают хромосомы.

Зайдите в Интернете на сайты http://zcww.cellsalive.com/mitosis.h t m (митоз и клеточный цикл) и http://ru.wikipedia.org/wiki/ (фотосинтез), где вы найдёте много интересных сведений о клетке.

Прокариоты, эукариоты, органоиды клетки, мономеры, полимеры, нуклеиновые кислоты, нуклеотиды, ДНК, РНК, АТФ, ферменты, биосинтез, фотосинтез, метаболизм, ассимиляция, диссимиляция, гликолиз, клеточное (тканевое) дыхание, митоз, интерфаза, клеточный цикл.

1. Ассимиляция

2. Фотосинтез

3. Световая фаза фотосинтеза

1. Ассимиляция - это превращение чужеродных веществ в компо­ненты собственного организма. Ассимиляция бывает ".

автотрофная - синтез органических веществ из неорганиче­ских. Характерна для зеленых растений, сине-зеленых водо­рослей, некоторых бактерий и имеет огромное значение для всех живых существ. Это так называемая первичная продукция;

гетеротрофная остальных организмов - сравнительно более простой процесс превращения одних органических веществ в другие.

Поскольку органические вещества представляют собой соеди­нения углерода, то решающее значение имеет ассимиляция уг­лерода - процесс восстановления, который ведет от макси­мально окисленного исходного вещества СО2 к менее окис­ленным продуктам, таким, как углеводы.

У зеленых растений и сине-зеленых водорослей источником необходимых для восстановления электронов служит вода, ко­торая при отнятии электронов окисляется^ Автотрофные бак­терии неспособны к окислению воды, им нужны другие доно­ры электронов. Большую потребность в энергии удовлетворяет фотосинтез или окисление поглощаемых веществ - хемосинтез.

2. Фотосинтез - это преобразование энергии света в химическую энергию, которое происходит в пластидах. Химическая энергия накапливается прежде всего в форме АТР [Н 2 ] (водород, свя­занный с коферментом). Для облигатных автотрофов (зеленых

бактерий, пурпурных серобактерий, многих сине-зеленых во­дорослей) фотосинтез - единственный источник энергии, так как у них нет процессов диссимиляции, поставляющих АТР.

В зеленых клетках высших растений большие количества АТР [Н 2 ] тоже переходят в цитоплазму. Значительная часть АТР [Н 2 ] в (форме NAD Ч Н + Н +) попадает в митохондрии и там окисляется в цепи дыхания для дополнительного синтеза АТР.

У высших растений большая часть АТР [Н 2 ] используется для синтеза углеводов из СО 2 . Таким образом, фотосинтез включает :

Преобразование энергии - световая фаза - в тилакоидах хло-ропластов;

Превращение веществ (ассимиляция углерода) - темновая фа­за-в строме хлоропластов.

Восстановитель [Н 2 ] образуется при расщеплении воды за счет энергии света (фотосинтез), при котором выделяется О 2 . АТР синтезируется при прохождении электронов по цепи транс­порта электронов. Переносчиком водорода служит NADP (ни-котинамидаденин-динуклеотидфосфат), который по сравнению с NAD содержит на один фосфатный остаток больше. NAD Ч Н + Н + и АТР направляются в темновой процесс, где водород и энергия используются для синтеза углеводов из СО 2 , а затем NADP + и АДР снова используются в световом процессе.

Другие органические вещества (не углеводы), например жир­ные кислоты или аминокислоты, могут быть побочными про­дуктами фотосинтеза или же вторично образуются из углеводов.

На каждые 6 молей поглощенного СО 2 выделяется 6 молей О 2 . Коэффициент ассимиляции AQ - отношение О 2 /СО 2 - при биосинтезе углеводов равен 1. Для восстановления одной мо­лекулы СО 2 необходимо около 9 квантов света, так что на 1 моль СО 2 должно приходиться 9 молей квантов. Поскольку

1 моль квантов красного света содержит 172 кДж, затрата энер­гии равна около 9172 кДж на 1 моль СО 2 , т. е. 6 х 9172 кДж = 9288 кДж на 1 моль С 6 Н 12 О б.

3. Световую фазу в расчете на 1 молекулу О 2 (или 1 молекулу СО 2) можно представить так : 2Н 2 О + световая энергия -» О 2 +

2 [Н 2 ] + энергия АТР.

Для переноса светового потока электронов против градиента окислительно-восстановительного потенциала (ОВП) использу­ется цепь транспорта электронов. На большинстве этапов электроны перемещаются "вниз" по градиенту ОВП без затра­ты энергии и без света. И только два этапа осуществляются против градиента ОВП за счет световой энергии:

Фотореакция I;

Фотореакция II.

Будучи фотохимическими реакциями, эти этапы не зависят от температуры и протекают даже при минимальных температу­рах. Фотохимическое действие могут оказывать только те кван­ты света, которые поглощаются пигментами. Тилакоиды содер­жат следующие пигменты, связанные с белками :

Хлорофиллы;

Каротиноиды (каротины и ксантофиллы);

Фикобилипротеиды (у красных и сине-зеленых водорослей). Свет поглощают все пигменты, но только фотосинтетически активные пигменты (хлорофилл А у растений и сине-зеленых водорослей и бактериохлорофилл у бактерий) выполняют при этом фотохимическую работу - транспорт электронов. Доба­вочные пигменты (хлорофилл В, каротиноиды, фикобилипро­теиды) передают поглощенную энергию активным пигментам без существенных потерь.

Хлорофиллы поглощают свет в синей и красной областях спектра, каротиноиды - в синей и сине-зеленой областях. В зеленой и желтой областях свет не поглощается (исключение составляют красные и сине-зеленые водоросли) и фотосинтеза не происходит.

При поглощении светового кванта молекулы пигмента возбуж­даются, т. е. на короткое время переходят в высокоэнергетиче­ское, возбужденное состояние. При их возвращении в исходное состояние выделяется энергия, за счет которой может совер­шаться различная работа. Хлорофилл может иметь различные возбужденные состояния. При возвращении в исходное состояние энергия может :

Выделяться в виде флуоресценции или тепла;

Передаваться в качестве возбуждающей энергии другим моле­кулам;

Использоваться для фотохимической работы.

В клетке постоянно происходит обмен веществ и энергии с окружающей средой. Обмен веществ (метаболизм) - основное свойство живых организмов. На клеточном уровне метаболизм включает два процесса: ассимиляцию (анаболизм) и диссимиляцию (катаболизм). Эти процессы происходят в клетке одновременно.

Ассимиляция (пластический обмен) - совокупность реакций биологического синтеза. Из простых веществ, поступающих в клетку извне, образуются вещества, характерные для данной клетки. Синтез веществ в клетке происходит с использованием энергии, заключенной в молекулах АТФ.

Диссимиляция (энергетический обмен) - совокупность реакций расщепления веществ. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза.

По типу ассимиляции организмы могут быть автотрофными, гетеротрофными и миксотрофными.

Фотосинтез и хемосинтез - две формы пластического обмена. Фотосинтез - процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.

Хемосинтез - способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений

Обычно все организмы, способные из неорганических веществ синтезировать органические, т.е. организмы, способные к фотосинтезу и хемосинтезу, относят к автотрофам. К автотрофам традиционно относят растения и некоторые микроорганизмы.

Основное вещество, участвующее в многоступенчатом процессе фотосинтеза -хлорофилл. Именно оно трансформирует солнечную энергию в химическую.

Световая фаза фотосинтеза:

(осуществляется на мембранах тилакойдов)

Свет, попав на молекулу хлорофилла, поглощается им и приводит его в возбужденное состояние - электрон, входящий в состав молекулы, поглотив энергию света, переходит на более высокий энергетический уровень и участвует в процессах синтеза;

Под действием света так же происходит расщепление (фотолиз) воды:

протоны (с помощью электронов) превращаются в атомы водорода и расходуются на синтез углеводов;

синтезируется АТФ (энергия)

Темновая фаза фотосинтеза (протекает в стромах хлоропластов)

собственно синтез глюкозы и выделение кислорода

Обратите внимание : темновой эта фаза называется не потому что идет ночью - синтез глюкозы происходит, в общем-то, круглосуточно, но для темновой фазы уже не нужна световая энергия.

20. Обмен веществ в клетке. Процесс диссимиляции. Основные этапы энергетического обмена.

Во всех клетках живых организмов непрерывно идут процессы обмена веществ и энергии - это метаболизм. Если рассмотреть этот процесс более детально, то это постоянные процессы образования и распада веществ и поглощения и выделения энергии.

Обмен веществ в клетке:

Процесс синтеза веществ = пластический обмен = ассимиляция = анаболизм

Чтобы что-то построить, надо затратить энергию - этот процесс идет с поглощением энергии.

Процесс расщепления = энергетический обмен = диссимиляция =катаболизм

Это процесс, при котором сложные вещества разлагаются на простые, энергия при этом выделяется.

В основном, это реакции окисления, происходят они в митохондриях, самый простой пример -дыхание . При дыхании сложные органические вещества расщепляются до простых, выделяется углекислый газ и энергия. Вообще, эти два процесса взаимосвязаны и переходят один в другой. Суммарно уравнение метаболизма - обмена веществ в клетке - можно записать так:
катаболизм + анаболизм = обмен веществ в клетке = метаболизм.

В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки, сложные углеводы, жиры, нуклеиновые кислоты. Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянными свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом. Все реакции биосинтеза идут с поглощением энергии. Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО 2 и Н 2 О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии.

Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии. Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются. Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой.

Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

Энергетический обмен . Для жизнедеятельности организма необходима энергия. Растения аккумулируют солнечную энергию в органических веществах при фотосинтезе. В процессе энергетического обмена органические вещества расщепляются и энергия химических связей освобождается. Частично она рассеивается в виде тепла, а частично запасается в молекулах АТФ. У животных энергетический обмен протекает в три этапа.

Первый этап - подготовительный. Пища поступает в организм животных и человека в виде сложных высокомолекулярных соединений. Прежде чем поступить в клетки и ткани, эти вещества должны разрушиться до низкомолекулярных, более доступных для клеточного усвоения веществ. На первом этапе происходит гидролитическое расщепление органических веществ, идущее при участии воды. Оно протекает под действием ферментов в пищеварительном тракте многоклеточных животных, в пищеварительных вакуолях одноклеточных, а на клеточном уровне - в лизосомах. Реакции подготовительного этапа:

белки + Н 2 0 -> аминокислоты + Q;

жиры + Н 2 0 -> глицерин + высшие жирные кислоты + Q;

полисахариды -> глюкоза + Q.

У млекопитающих и человека белки расщепляются до аминокислот в желудке и в двенадцатиперстной кишке под действием ферментов - пептидгидролаз (пепсина, трипсина, хемотрипсина). Расщепление полисахаридов начинается в ротовой полости под действием фермента птиалина, а далее продолжается в двенадцатиперстной кишке под действием амилазы. Там же расщепляются и жиры под действием липазы. Вся энергия, выделяющаяся при этом, рассеивается в виде тепла. Образующиеся низкомолекулярные вещества поступают в кровь и доставляются ко всем органам и клеткам. В клетках они поступают в лизосому или непосредственно в цитоплазму. Если расщепление происходит на клеточном уровне в лизосомах, то вещество сразу же поступает в цитоплазму. На этом этапе происходит подготовка веществ к внутриклеточному расщеплению.

Второй этап - бескислородное окисление. Второй этап осуществляется на клеточном уровне при отсутствии кислорода. Он протекает в цитоплазме клетки. Рассмотрим расщепление глюкозы, как одного из ключевых веществ обмена в клетке. Все остальные органические вещества (жирные кислоты, глицерин, аминокислоты) на разных этапах втягиваются в процессы ее превращения. Бескислородное расщепление глюкозы называется гликолизом. Глюкоза претерпевает ряд последовательных превращений (рис. 16). Вначале она преобразуется во фруктозу, фосфорилируется - активируется двумя молекулами АТФ и превращается во фруктозо-дифосфат. Далее молекула шестиатомного углевода распадается на два трехуглеродных соединения - две молекулы глицерофосфата (триозы). После ряда реакций они окисляются, теряя по два атома водорода, и превращаются в две молекулы пировиноградной кислоты (ПВК). В результате этих реакций синтезируются четыре молекулы АТФ. Так как первоначально на активацию глюкозы было затрачено две молекулы АТФ, то общий итог составляет 2АТФ. Таким образом, выделяющаяся при расщеплении глюкозы энергия частично запасается в двух молекулах АТФ, а частично расходуется в виде тепла. Четыре атома водорода, которые были сняты при окислении глицерофосфата, соединяются с переносчиком водорода НАД + (никотинамид-динуклеотидфосфат). Это такой же переносчик водорода, как и НАДФ + , но участвует в реакциях энергетического обмена.

Обобщенная схема реакций гликолиза:

С 6 Н 12 0 6 + 2НАД + - > 2С 3 Н 4 0 3 + 2НАД 2H

2АДФ - > 2АТФ

Восстановленные молекулы НАД 2Н поступают в митохондрии, где окисляются, отдавая водород.В зависимости от типа клеток, ткани или организмов пировиноградная кислота в бескислородной среде может превращаться далее в молочную кислоту, этиловый спирт, масляную кислоту или другие органические вещества. У анаэробных организмов эти процессы называются брожением.

Молочнокислое брожение:

С 6 Н 12 0 6 + 2НАД + -> 2С 3 Н 4 0 3 + 2НАД 2Н <=> 2С 3 Н 6 0 3 + 2НАД +

Глюкоза ПВК молочная кислота

Спиртовое брожение:

С 6 Н 12 0 6 + 2НАД + -> 2С 3 Н 4 0 3 + 2НАД 2Н <=> 2С 2 Н 5 ОН + 2С0 2 + 2НАД +

Глюкоза ПВК этиловый спирт

Третий этап - биологическое окисление, или дыхание. Этот этап протекает только в присутствии кислорода и иначе называется кислородным. Он протекает в митохондриях. Пировиноградная кислота из цитоплазмы поступает в митохондрии, где теряет молекулу углекислого газа и превращается в уксусную кислоту, соединяясь с активатором и переносчиком коэнзимом-А. Образующийся ацетил-КоА далее вступает в серию циклических реакций. Продукты бескислородного расщепления - молочная кислота, этиловый спирт - также далее претерпевают изменения и подвергаются окислению кислородом. В пировиноградную кислоту превращается молочная кислота, если она образовалась при недостатке кислорода в тканях животных. Этиловый спирт окисляется до уксусной кислоты и связывается с КоА. Циклические реакции, в которых происходит преобразование уксусной кислоты, носят название цикла ди- и трикарбоновых кислот, или цикла Кребса, по имени ученого, впервые описавшего эти реакции. В результате ряда последовательных реакций происходит декарбоксилирование - отщепление углекислого газа и окисление - снятие водорода с образующихся веществ. Углекислый газ, образующийся при декарбоксилировании ПВК и в цикле Кребса, выделяется из митохондрий, а далее из клетки и организма в процессе дыхания. Таким образом, углекислый газ образуется непосредственно в процессе декарбоксилирования органических веществ. Весь водород, который снимается с промежуточных веществ, соединяется с переносчиком НАД + , и образуется НАД 2Н. При фотосинтезе углекислый газ соединяется с промежуточными веществами и восстанавливается водородом. Здесь идет обратный процесс.

Общее уравнение декарбоксилирования и окисления ПВК:

2С 3 Н 4 0 3 + 6Н 2 0 + 10НАД + -> 6С0 2 + 10НАД Н.

Проследим теперь путь молекул НАД 2Н. Они поступают на кристы митохондрий, где расположена дыхательная цепь ферментов. На этой цепи происходит отщепление водорода от переносчика с одновременным снятием электронов. Каждая молекула восстановленного НАД 2Н отдает два водорода и два электрона. Энергия снятых электронов очень велика. Они поступают на дыхательную цепь ферментов, которая состоит из белков - цитохромов. Перемещаясь по этой системе каскадно, электрон теряет энергию. За счет этой энергии в присутствии фермента АТФ-азы синтезируются молекулы АТФ. Одновременно с этими процессами происходит перекачивание ионов водорода через мембрану на наружную ее сторону. В процессе окисления 12 молекул НАД-2Н, которые образовались при гликолизе (2 молекулы) и в результате реакций в цикле Кребса (10 молекул), синтезируются 36 молекул АТФ. Синтез молекул АТФ, сопряженный с процессом окисления водорода, называетсяокислительным фосфорилированием. Конечным акцептором электронов является молекула кислорода, поступающая в митохондрии при дыхании. Атомы кислорода на наружной стороне мембраны принимают электроны и заряжаются отрицательно. Положительные ионы водорода соединяются с отрицательно заряженным кислородом, и образуются молекулы воды. Вспомним, что кислород атмосферы образуется в результате фотосинтеза при фотолизе молекул воды, а водород идет на восстановление углекислого газа. В процессе энергетического обмена водород и кислород вновь соединяются и превращаются в воду.

Обобщенная реакция кислородного этапа окисления:

2С 3 Н 4 0 3 + 4Н + 60 2 -> 6С0 2 + 6Н 2 0;

36АДФ -> 36АТФ.

Итак, выход молекул АТФ при кислородном окислении в 18 раз больше, чем при бескислородном.

Суммарное уравнение окисления глюкозы на двух этапах:

С 6 Н 12 0 6 + 60 2 -> 6С0 2 + 6Н 2 0 + Е -> Q (тепло).

38АДФ -> 38АТФ

Таким образом, при расщеплении глюкозы на двух этапах образуется суммарно 38 молекул АТФ, причем основная часть - 36 молекул - при кислородном окислении. Такой выигрыш энергии обеспечил преимущественное развитие аэробных организмов по сравнению с анаэробными.

21. Митотический цикл клетки. Характеристика периодов. Митоз, его биологическое значение. Амитоз.

Под клеточным (жизненным) циклом понимают существование клетки от момента ее появления в результате деления до другого деления или до гибели клетки.

Близкое к нему понятие - митотический цикл.

Митотический цикл - это жизнедеятельность клетки от деления до следующего деления.

Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1) (2n2c, где n-число хромосом, c- число молекул). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S) (2n4c). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохондриальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2) (2n4c). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу . Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Ассимиляция, диссимиляция.

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его на пластический (анаболизм ) и энергетический обмены (катаболизм ), которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

Для отдельных процессов, происходящих в организмах, используются следующие термины:

Анаболизм ( ассимиляция ) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

Катаболизм ( диссимиляция ) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы , – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода. Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно ) – росянка, венерина мухоловка или даже гетеротроф– но – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые.

Ферменты, их химическая природа, роль в метаболизме . Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

Энергетический обмен в клетке (диссимиляция)

Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями.

Первый этап подготовительный . В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

Второй этап бескислородный ( гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением .

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

Третий этап кислородный , состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование или клеточное дыхание происходит, на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Суммарная реакция энергетического обмена:

С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.

Фотосинтез и хемосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл . Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат ). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ Н

2Н+ + 4е- + НАДФ+ → НАДФ Н;

3) фотолиз воды , происходящий при участии квантов света: 2Н2О → 4Н+ + 4е- + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Так как в экзаменационных работах спрашивают не о механизмах фотосинтеза, а о результатах этого процесса, то мы и перейдем к ним.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

«Темновая фаза» – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза -

Значение фотосинтеза . В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.