Основы формальной логики. Законы поглощения алгебра логики a. Закон дополнительных элементов

Урок по информатике рассчитан на учащихся 10-х классов общеобразовательной школы, в учебном плане которой входит раздел «Алгебра логики». Учащимся очень нелегко дается эта тема, поэтому мне, как учителю, захотелось заинтересовать их в изучении законов логики, упрощении логических выражений и с интересом подойти к решению логических задач. В обычной форме давать уроки по этой теме нудно и хлопотно, да и ребятам не всегда понятны некоторые определения. В связи с предоставлением информационного пространства, у меня появилась возможность выкладывать свои уроки в оболочке «learning». Учащиеся, зарегистрировавшись в ней, могут в свое свободное время посещать этот курс и перечитывать то, что было непонятно на уроке. Некоторые учащиеся, пропустив уроки по болезни, наверстывают дома или в школе пропущенную тему и всегда готовы к следующему уроку. Такая форма преподавания очень устроила многих ребят и те законы, которые им были непонятны, теперь в компьютерном виде ими усваиваются гораздо легче и быстрее. Предлагаю один из таких уроков информатики, который проводится интегративно с ИКТ.

План урока

  1. Объяснение нового материала, с привлечением компьютера – 25 минут.
  2. Основные понятия и определения, выложенные в «learning» - 10 минут.
  3. Материал для любознательных – 5 минут.
  4. Домашнее задание – 5 минут.

1. Объяснение нового материала

Законы формальной логики

Наиболее простые и необходимые истинные связи между мыслями выражаются в основных законах формальной логики. Таковыми являются законы тождества, непротиворечия, исключенного третьего, достаточного основания.

Эти законы являются основными потому, что в логике они играют особо важную роль, являются наиболее общими. Они позволяют упрощать логические выражения и строить умозаключения и доказательства. Первые три из вышеперечисленных законов были выявлены и сформулированы Аристотелем, а закон достаточного основания - Г. Лейбницем.

Закон тождества: в процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе.

Закон непротиворечия: невозможно, чтобы одно и то оке в одно то же время было и не было присуще одному и тому же в одном и том же отношении. То есть невозможно что-либо одновременно утверждать и отрицать.

Закон исключенного третьего: из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано.

Закон достаточного основания: всякая истинная мысль должна быть достаточно обоснована.

Последний закон говорит о том, что доказательство чего-либо предполагает обоснование именно и только истинных мыслей. Ложные же мысли доказать нельзя. Есть хорошая латинская пословица: «Ошибаться свойственно всякому человеку, но настаивать на ошибке свойственно только глупцу». Формулы этого закона нет, так как он имеет только содержательный характер. В качестве аргументов для подтверждения истинной мысли могут быть использованы истинные суждения, фактический материал, статистические данные, законы науки, аксиомы, доказанные теоремы.

Законы алгебры высказываний

Алгебра высказываний (алгебра логики) - раздел математической логики, изучающий логические операции над высказываниями и правила преобразования сложных высказываний.

При решении многих логических задач часто приходится упрощать формулы, полученные при формализации их условий. Упрощение формул в алгебре высказываний производится на основе эквивалентных преобразований, опирающихся на основные логические законы.

Законы алгебры высказываний (алгебры логики) - это тавтологии.

Иногда эти законы называются теоремами.

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул. Среди законов особо выделяются такие, которые содержат одну переменную.

Первые четыре из приведенных ниже законов являются основными законами алгебры высказываний.

Закон тождества:

Всякое понятие и суждение тождественно самому себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. При нарушении этого закона возможны логические ошибки.

Например, рассуждение Правильно говорят, что язык до Киева доведет, а я купил вчера копченый язык, значит, теперь смело могу идти в Киев неверно, так как первое и второе слова «язык» обозначают разные понятия.

В рассуждении: Движение вечно. Хождение в школу - движение. Следовательно, хождение в школу вечно слово «движение» используется в двух разных смыслах (первое - в философском смысле - как атрибут материи, второе - в обыденном смысле - как действие по перемещению в пространстве), что приводит к ложному выводу.

Закон непротиворечия:

Не могут быть одновременно истинными суждение и его отрицание. То есть если высказывание А - истинно, то его отрицание не А должно быть ложным (и наоборот). Тогда их произведение будет всегда ложным.

Именно это равенство часто используется при упрощении сложных логических выражений.

Иногда этот закон формулируется так: два противоречащих друг другу высказывания не могут быть одновременно истинными. Примеры невыполнения закона непротиворечия:

1. На Марсе есть жизнь и на Марсе жизни нет.

2. Оля окончила среднюю школу и учится в X классе.

Закон исключенного третьего:

В один и тот же момент времени высказывание может быть либо истинным, либо ложным, третьего не дано. Истинно либо А, либо не А. Примеры выполнения закона исключенного третьего:

1. Число 12345 либо четное, либо нечетное, третьего не дано.

2. Предприятие работает убыточно или безубыточно.

3. Эта жидкость является или не является кислотой.

Закон исключенного третьего не является законом, признаваемым всеми логиками в качестве универсального закона логики. Этот закон применяется там, где познание имеет дело с жесткой ситуацией: «либо - либо», «истина-ложь». Там же, где встречается неопределенность (например, в рассуждениях о будущем), закон исключенного третьего часто не может быть применен.

Рассмотрим следующее высказывание: Это предложение ложно. Оно не может быть истинным, потому что в нем утверждается, что оно ложно. Но оно не может быть и ложным, потому что тогда оно было бы истинным. Это высказывание не истинно и не ложно, а потому нарушается закон исключенного третьего.

Парадокс (греч. paradoxos - неожиданный, странный) в этом примере возникает из-за того, что предложение ссылается само на себя. Другим известным парадоксом является задача о парикмахере: В одном городе парикмахер стрижет волосы всем жителям, кроме тех, кто стрижет себя сам. Кто стрижет волосы парикмахеру? В логике из-за ее формальности нет возможности получить форму такого ссылающегося самого на себя высказывания. Это еще раз подтверждает мысль о том, что с помощью алгебры логики нельзя выразить все возможные мысли и доводы. Покажем, как на основании определения эквивалентности высказываний могут быть получены остальные законы алгебры высказываний.

Например, определим, чему эквивалентно (равносильно) А (двойное отрицание А, т. е. отрицание отрицания А). Для этого построим таблицу истинности:

По определению равносильности мы должны найти тот столбец, значения которого совпадают со значениями столбца А. Таким будет столбец А.

Таким образом, мы можем сформулировать закон двойного отрицания:

Если отрицать дважды некоторое высказывание, то в результате получается исходное высказывание. Например, высказывание А = Матроскин - кот эквивалентно высказыванию А = Неверно, что Матроскин не кот.

Аналогичным образом можно вывести и проверить следующие законы:

Свойства констант:

Законы идемпотентности:

Сколько бы раз мы ни повторяли: телевизор включен или телевизор включен или телевизор включен... значение высказывания не изменится. Аналогично от повторения на улице тепло, на улице тепло,... ни на один градус теплее не станет.

Законы коммутативности:

A v B = B v A

А & В = В & А

Операнды А и В в операциях дизъюнкции и конъюнкции можно менять местами.

Законы ассоциативности:

A v(B v C) = (A v B) v C;

А & (В & C) = (A & В) & С.

Если в выражении используется только операция дизъюнкции или только операция конъюнкции, то можно пренебрегать скобками или произвольно их расставлять.

Законы дистрибутивности:

A v (B & C) = (A v B) &(A v C)

(дистрибутивность дизъюнкции
относительно конъюнкции)

А & (B v C) = (A & B) v (А & C)

(дистрибутивность конъюнкции
относительно дизъюнкции)

Закон дистрибутивности конъюнкции относительно дизъюнкции ана­логичен дистрибутивному закону в алгебре, а закон дистрибутивности дизъюнкции относительно конъюнкции аналога не имеет, он справедлив только в логике. Поэтому необходимо его доказать. Доказательство удобнее всего провести с помощью таблицы истинности:

Законы поглощения:

A v (A & B) = A

A & (A v B) = A

Проведите доказательство законов поглощения самостоятельно.

Законы де Моргана:

Словесные формулировки законов де Моргана:

Мнемоническое правило: в левой части тождества операция отрицания стоит над всем высказыванием. В правой части она как бы разрывается и отрицание стоит над каждым из простых высказываний, но одновременно меняется операция: дизъюнкция на конъюнкцию и наоборот.

Примеры выполнения закона де Моргана:

1) Высказывание Неверно, что я знаю арабский или китайский язык тождественно высказыванию Я не знаю арабского языка и не знаю китайского языка.

2) Высказывание Неверно, что я выучил урок и получил по нему двойку тождественно высказыванию Или я не выучил урок, или я не получил по нему двойку.

Замена операций импликации и эквивалентности

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка программирования. Однако для решения многих задач эти операции необходимы. Существуют правила замены данных операций на последовательности операций отрицания, дизъюнкции и конъюнкции.

Так, заменить операцию импликации можно в соответствии со следующим правилом:

Для замены операции эквивалентности существует два правила:

В справедливости данных формул легко убедиться, построив таблицы истинности для правой и левой частей обоих тождеств.

Знание правил замены операций импликации и эквивалентности помогает, например, правильно построить отрицание импликации.

Рассмотрим следующий пример.

Пусть дано высказывание:

Е = Неверно, что если я выиграю конкурс, то получу приз.

Пусть А = Я выиграю конкурс,

В = Я получу приз.

Отсюда, Е = Я выиграю конкурс, но приз не получу.

Интерес представляют и следующие правила:

Доказать их справедливость можно также с помощью таблиц истинности.

Интересно их выражение на естественном языке.

Например, фраза

Если Винни-Пух съел мед, то он сыт

тождественна фразе

Если Винни-Пух не сыт, то меда он не ел.

Задание: придумайте фразы-примеры на данные правила.

2. Основные понятия и определения в Приложении 1

3. Материал для любознательных в Приложении 2

4. Домашнее задание

1) Выучить законы логики, используя курс «Алгебры логики», размещенный в информационном пространстве (www.learning.9151394.ru).

2) Проверить на ПК доказательство законов де Моргана, построив таблицу истинности.

Приложения

  1. Основные понятия и определения (

Дискретная математика: Математическая логика

Лекция 8

Минимизация булевых функций. Метод Квайна-МакКласки

Законы алгебры Буля

В математической логике определяется специальная алгебра, алгебра Буля, содержащая операции логического умножения, логического сложения и отрицания {  ,+, - }, которые позволяет производить тождественные преобразования логических выражений. К этим законам относятся

Закон идемпотентности (одинаковости)

Закон коммутативности

a  b = b a

Закон ассоциативности

a + (b + c) = (a + b) + c

a  (b  c) = (a  b)  c

Законы дистрибутивности

Дистрибутивность конъюнкции относительно дизъюнкции

A  (b + c) = a  b + a  c

Дистрибутивность дизъюнкции относительно конъюнкции

A + b  c = (a + b)  (a + c)

акон двойного отрицания


Законы де Моргана


Законы поглощения

a + a  b = a

a  (a + b) = a

Законы, определяющие действия с логическими константами 0 и 1


a + 0 = a

a  0 = 0


a + 1 = 1

a  1 = a

1 = 0



Правомерность всех рассмотренных выше законов может быть легко доказана, например, с использованием таблиц истинности.
Дополнительные законы

Дополнительные законы алгебры Буля являются следствиями из основных законов и очень полезны при упрощении записи логических функций.
Закон склеивания

Доказательство этого тождества проводится с использованием первого закона дистрибутивности:


Доказательство этого тождества проводится с использованием второго закона дистрибутивности:

Закон Блейка-Порецкого


Применяя законы действия с логическими константами, идемпотентности и склеивания, данное тождество можно доказать следующим образом:

Закон свертки логического выражения

Данное тождество можно доказать, последовательно используя законы работы с логическими константами, дистрибутивности, идемпотентности и склеивания:

Упрощение логических функций

Для нормальных форм представления функций определено понятие сложности функции, как число первичных термов в таком представлении. Преобразования нормальной формы с целью снижения сложности функции называется упрощением . Для упрощения логических функций используются все законы алгебры логики..

Задачи.

Упростить СДНФ следующих функций:

1. (a b ) c

2. (a b ) c

Представим функцию в совершенной дизъюнктивной форме и упростим ее с помощью законов алгебры логики:

3.

Представим функцию в совершенной дизъюнктивной форме и упростим ее с помощью законов алгебры логики:

СДНФ =

Дальнейшее упрощение невозможно.

4.

Представим функцию в совершенной дизъюнктивной форме и упростим ее с помощью законов алгебры логики:

СДНФ =
5.

Представим функцию в совершенной дизъюнктивной форме и упростим ее с помощью законов алгебры логики:

Метод Квайна-МакКласки

Минимизация логических функций можно проводить с помощью метода Квайна-МакКласски, который состоит из четырех шагов:


  1. Представим наборы (конституенты), на которых функция истинна, в виде двоичных эквивалентов.

  2. Упорядочим двоичные эквиваленты по ярусам (по числу единиц двоечных эквивалентов) и провести склейку (применить правило склеивания к соответствующим конституентам) наборов в соседних ярусах, получая максимальные интервалы до тех пор, пока это возможно; помечаем каждый набор, участвовавший в склейке. Склеиваются только те наборы или интервалы, различие в которых заключается только в значении одного разряда: 001 и 000, 001- и 101-, и т.д.

  3. Построим таблицу Квайна, столбцы которой соответствуют двоичные наборы истинности функции, а строки – максимальным интервалам. Если i-ый набор покрывается j-ым интервалом, то ставим 1 на пересечении соответствующих строки и столбца, в противном случае ставим 0 или ничего.

  4. Находим минимальное покрытие таблицы Квайна, состоящее из минимального количества максимальных интервалов, включающих в себя (покрывающих) все наборы, на которых функция истинна.
Рассмотрим функцию F1, которая истинна на наборах {1, 3, 5, 7, 11, 13, 15}. Совершенная дизъюнктивная нормальная форма данной функции равна:

Двоичные эквиваленты истинных наборов следующие:


1

0001

3

0011

5

0101

7

0111

11

1011

13

1101

15

1111

Упорядочим двоичные наборы по ярусам и проведем склейки, до тех пор, пока это возможно


0001  

00-1 

0-1

0011  

0-01 

--11

0101  

-011 

-1-1

0111   

0-11  

1101  

-101 

1011  

01-1  

1111   

11-1 

-111  

1-11 

Затем строим таблицу Квайна:


0001

0011

0101

0111

1011

1101

1111

0--1

1

1

1

1

--11

1

1

1

1

1

-1-1

1

1

1

1

В нашей таблице наборы 0001 и 1011 покрываются единственно возможным образом, следовательно, покрывающие их минимальные интервалы называются обязательными и образуют ядро покрытия , т.к. должны входить в любое покрытие. В таблице соответствующие единицы подчеркнуты, интервалы {0- -1,- -11} образуют не только ядро покрытие, но и покрывают всю таблицу Квайна.
Таким образом, мы получили минимальную форму исследуемой функции в виде:

МДНФ = {0 - - 1, - - 1 1} =

Рассмотрим несколько примеров.
Задачи.

1. Найти МДНФ функции f 1 =

f1


x1 x2 x3 x4



0 0 0 0

0

0 0 0 1

1

0 0 1 0

1

0 0 1 1

1

0 1 0 0

1

0 1 0 1

0

0 1 1 0

0

0 1 1 1

1

1 0 0 0

0

1 0 0 1

1

1 0 1 0

1

1 0 1 1

1

1 1 0 0

0

1 1 0 1

1

1 1 1 0

0

1 1 1 1

1

Совершенная ДНФ исследуемой функции имеет вид:


0001 

00-1 

-0-1

0010 

-001 

-01-

0100

001- 

--11

0011 

-010 

1-1

1010 

0-11 

1001 

-011 

0111 

101- 

1011 

10-1 

1101 

1-01 

1111 

-111 

1-11 

11-1 

В первом столбике присутствует набор, который не участвовал ни в одной склейке – он сам является максимальным интервалом 0100. В третьем столбике к нему добавляется еще четыре максимальных интервала: {-0-1, -01-, --11, 1--1}.

Строим таблицу Квайна:


0001

0010

0100

0011

1010

1001

0111

1011

1101

1111

0100

1

-0-1

1

1

1

1

-01-

1

1

1

1

--11

1

1

1

1

1--1

1

1

1

1

Определим ядро покрытия, в которое войдут обязательные интервалы:

{0100, -0-1, -01-, --11}. В данном случае, ядро покрытия покрывает и всю таблицу в целом.

Минимальная дизъюнктивная нормальная форма f1 имеет вид:

2. Найти МДНФ функции f 2( x 1, x 2, x 3), которая принимает единичные значения на наборах 0,2,3,6 и 7.

Построим таблицу истинности для f 2


x1 x2 x3

F2

0 0 0

1

0 0 1

0

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

0

1 1 0

1

1 1 1

1

СДНФ =
Упорядочим двоичные наборы по ярусам и проведем склейку:


000 

0-0 

--0

010 

-00 

100 

-10 

110 

1-0 

111 

11-

В результате склейки у нас получилось всего два максимальных интервала: {11-, --0}. Без построения таблицы Квайна очевидно, что они образуют минимальное покрытие, т.к. удаление любого из этих интервалов приведет к потери наборов, на которых функция f2(x1, x2, x3) истинна. МДНФ = x1 x2 +x3.

ЛИТЕРАТУРА


  1. Гусева А.И. Учимся информатике: задачи и методы их решения.- М.: ДИАЛОГ-МИФИ, 2003.

  2. Горбатов В.А. Фундаментальные основы дискретной математики. - М.: Наука. Физматлит, 1999.-544с

§4. Равносильные, ТИ и ТЛ формулы алгебры логики. Основные равносильности. (Законы логических операций). Закон двойственности.

Определение.

Две формулы алгебры логики А и В называются РАВНОСИЛЬНЫМИ, если они принимают одинаковые логические значения на любом наборе входящих в формулы элементарных высказываний. Равносильность формул будем обозначать знаком º, а запись А ºВ означает, что формулы А и В равносильны.

Формула А называется ТОЖДЕСТВЕННО ИСТИННОЙ (или ТАВТОЛОГИЕЙ), если она принимает значение 1 при всех значениях входящих в неё переменных.

Формула называется ТОЖДЕСТВЕННО ЛОЖНОЙ (или ПРОТИВОРЕЧИЕМ), если она принимает значение 0 при всех значениях входящих в неё переменных.

Между понятиями равносильности и эквивалентности существует следующая связь: если формулы А и В равносильны, то формула А«В – тавтология, и обратно, если формула А«В – тавтология, то формулы А и В равносильны.

Важнейшие равносильности алгебры логики можно разбить на три группы.

1. Основные равносильности.

Законы идемпотентности.

Закон противоречия

Закон исключенного третьего

Закон снятия двойного отрицания

законы поглощения

2. Равносильности, выражающие одни логические операции через другие.

Здесь 3, 4, 5, 6 – законы Моргана.

Ясно, что равносильности 5 и 6 получаются из равносильностей 3 и 4, соответственно, если от обеих частей последних взять отрицания и воспользоваться законом снятия двойного отрицания.

Таким образом, в доказательстве нуждаются первые четыре равносильности. Докажем одну из них: первую.

Так как при одинаковых логических значениях x и y истинными являются формулы https://pandia.ru/text/78/396/images/image018.gif" width="124" height="21">. Следовательно, в этом случае обе части равносильности имеют одинаковые истинные значения.

Пусть теперь x и y имеют различные логические значения. Тогда будут ложными эквивалентность и одна из двух импликаций или . Но при этом будет ложной и конъюнкция .

Таким образом, и в этом случае обе части равносильности имеют одинаковые логические значения.

Аналогично доказываются равносильности 2 и 4.

Из равносительностей этой группы следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: конъюнкцию и отрицание или дизъюнкцию и отрицание.

Дальнейшее исключение логических операций невозможно. Так, если мы будем использовать только конъюнкцию, то уже такая формула как отрицание не может быть выражена с помощью операции конъюнкции.

Однако существуют операции, с помощью которых может быть выражена любая из пяти логических операций, которыми мы пользуемся. Такой операцией является, например, операция “Штрих Шеффера”. Эта операция обозначается символом ½ left " style="border-collapse:collapse;border:none;margin-left:6.75pt;margin-right: 6.75pt">

Логика - наука, изучающая законы и формы мышления; учение о способах рассуждений и доказательств.

Законы мира, сущность предметов, общее в них мы познаем посредством абстрактного мышления. Основными формами абстрактного мышления являются понятия, суждения и умозаключения.

Понятие - форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов. Понятия в языке выражаются словами.

Объем понятия - множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия. Выделяют понятия общие и единичные.

Выделяют следующие отношения понятий по объему:

  • тождество или совпадение объемов, означающее, что объем одного понятия равен объему другого понятия;
  • подчинение или включение объемов: объем одного из понятий полностью включен в объем другого;
  • исключение объемов - случай, в котором нет ни одного признака, который бы находился в двух объемах;
  • пересечение или частичное совпадение объемов;
  • соподчинение объемов - случай, когда объемы двух понятий, исключающие друг друга, входят в объем третьего.

Суждение - это форма мышления, в которой что-либо утверждается или отрицается о предметах, признаках или их отношениях.

Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, мы по определенным правилам вывода получаем суждение-заключение.

Алгебра в широком смысле этого слова наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться не только над числами, но и над другими математическими объектами.

Примеры алгебр: алгебра натуральных чисел, алгебра рациональных чисел, алгебра многочленов, алгебра векторов, алгебра матриц, алгебра множеств и т.д. Объектами алгебры логики или булевой алгебры являются высказывания.

Высказывание - это любое предложение какого-либо языка (утверждение), содержание которого можно определить как истинное или ложное.

Всякое высказывание или истинно, или ложно; быть одновременно и тем и другим оно не может.

В естественном языке высказывания выражаются повествовательными предложениями. Восклицательные и вопросительные предложения высказываниями не являются.

Высказывания могут выражаться с помощью математических, физических, химических и прочих знаков. Из двух числовых выражений можно составить высказывания, соединив их знаками равенства или неравенства.

Высказывание называется простым (элементарным), если никакая его часть сама не является высказыванием.

Высказывание, состоящее из простых высказываний, называются составным (сложным).

Простые высказывания в алгебре логики обозначаются заглавными латинскими буквами:
А = {Аристотель - основоположник логики},
В = {На яблонях растут бананы}.

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания: "Сумма углов треугольника равна 180 градусов" устанавливается геометрией, причем - в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского - ложным.

Истинному высказыванию ставится в соответствие 1, ложному - 0. Таким образом, А = 1, В = 0.

Алгебра логики отвлекается от смысловой содержательности высказываний. Ее интересует только один факт - истинно или ложно данное высказывание, что дает возможность определять истинность или ложность составных высказываний алгебраическими методами.

Основные операции алгебры высказываний.

Логическая операция КОНЪЮНКЦИЯ (лат. conjunctio - связываю):

  • в естественном языке соответствует союзу и ;
  • обозначение: & ;
  • в языках программирования обозначение: and ;
  • иное название: логическое умножение .

Конъюнкция - это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

Таблица истинности конъюнкции:

А В А &В
0 0 0
0 1 0
1 0 0
1 1 1

Логическая операция ДИЗЪЮНКЦИЯ (лат. disjunctio - различаю):

Дизъюнкция - это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны и истинным, когда хотя бы одно из двух образующих его высказываний истинно.

Таблица истинности дизъюнкции:

А В А В
0 0 0
0 1 1
1 0 1
1 1 1

Логическая операция ИНВЕРСИЯ (лат. inversio - переворачиваю):

Отрицание - это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

Таблица истинности отрицания:

А не А
0 1
1 0

Функция логического сложения ИЛИ (ЛогЗнач1;ЛогЗнач2;…) дает значение TRUE (Истина), только тогда, когда хотя бы один логический аргумент имеют значение TRUE (1).

Функция логического отрицания НЕ(ЛогЗнач) дает значение TRUE (Истина), когда логический аргумент имеют значение FALSE (0) и, наоборот, значение FALSE (Ложь), когда логический аргумент имеют значение TRUE (1).

Логическая операция ИМПЛИКАЦИЯ (лат. implicatio - тесно связываю):

Импликация - это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие (первое высказывание) истинно, а следствие (второе высказывание) ложно.

Таблица истинности импликации:

А В А В
0 0 1
0 1 1
1 0 0
1 1 1

Логическая операция ЭКВИВАЛЕНЦИЯ (лат. аequivalens - равноценное):

  • в естественном языке соответствует оборотам речи тогда и только тогда и в том и только в том случае ;
  • обозначение: ~ ;
  • иное название: равнозначность .

Эквиваленция - это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

Таблица истинности эквиваленции:

А В А ~В
0 0 1
0 1 0
1 0 0
1 1 1

Логические операции имеют следующий приоритет: действия в скобках, инверсия, &, , ~.

Таблицу, показывающую, какие значения принимает составное высказывание при всех сочетаниях (наборах) значений входящих в него простых высказываний, называют таблицей истинности составного высказывания.

Составные высказывания в алгебре логики записываются с помощью логических выражений. Для любого логического выражения достаточно просто построить таблицу истинности.

Алгоритм построения таблицы истинности:

  1. подсчитать количество переменных n в логическом выражении;
  2. определить число строк в таблице m = 2 n ;
  3. подсчитать количество логических операций в формуле;
  4. установить последовательность выполнения логических операций с учетом скобок и приоритетов;
  5. определить количество столбцов в таблице: число переменных плюс число операций;
  6. выписать наборы входных переменных с учетом того, что они представляют собой натуральный ряд n-разрядных двоичных чисел от 0 до 2 n -1;
  7. провести заполнение таблицы истинности по столбикам, выполняя логические операции в соответствии с установленной в п.4 последовательностью.

Наборы входных переменных, во избежание ошибок, рекомендуют перечислять следующим образом:
а) определить количество наборов входных переменных;
б) разделить колонку значений первой переменной пополам и заполнить верхнюю часть колонки 0, а нижнюю -1;
в) разделить колонку значений второй переменной на четыре части и заполнить каждую четверть чередующимися группами 0 или 1, начиная с группы 0;
г) продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами 0 или 1 до тех пор, пока группы 0 и 1 не будут состоять из одного символа.

Пример. Для формулы A&(B C) построить таблицу истинности алгебраически и с использованием электронных таблиц.

Количество логических переменных 3, следовательно, количество строк в таблице истинности должно быть 2 3 = 8.

Количество логических операций в формуле 5, следовательно, количество столбцов в таблице истинности должно быть 3 + 5 = 8.

А В C В C А & (В C )
0 0 0 1 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1

Логической (булевой) функцией называют функцию F(Х 1 , Х 2 , ..., Х n) , аргументы которой Х 1 , Х 2 , ..., Х n (независимые переменные) и сама функция (зависимая переменная) принимают значения 0 или 1.

Таблицу, показывающую, какие значения принимает логическая функция при всех сочетаниях значений ее аргументов, называют таблицей истинности логической функции. Таблица истинности логической функции n аргументов содержит 2 n строк, n столбцов значений аргументов и 1 столбец значений функции.

Логические функции могут быть заданы табличным способом или аналитически - в виде соответствующих формул.

Если логическая функция представлена с помощью дизъюнкций, конъюнкций и инверсий, то такая форма представления называется нормальной .

Существует 16 различных логических функций от двух переменных.

Логические выражения называются равносильными , если их истинностные значения совпадают при любых значениях, входящих в них логических переменных.

В алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений. Приведем соотношения, отражающие эти законы.

  1. Закон двойного отрицания:
    не (не А) = A.
    Двойное отрицание исключает отрицание.
  2. Переместительный (коммутативный) закон:
    - для логического сложения:
    А B = B A;


    A & B = B & A.

    Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

  3. Сочетательный (ассоциативный) закон:
    - для логического сложения:
    (A B) C = A (B C);

    Для логического умножения:
    (A & B) & C = A & (B & C).

    При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

  4. Распределительный (дистрибутивный) закон:
    - для логического сложения:
    (A B) & C = (A & C) (B & C);

    Для логического умножения:
    (A & B) C = (A C) & (B C).

    Определяет правило выноса общего высказывания за скобку.

  5. Закон общей инверсии (законы де Моргана):
    - для логического сложения:
    ;

    Для логического умножения:
    .

  6. Закон идемпотентности (от латинских слов idem - тот же самый и potens -сильный; дословно - равносильный):
    - для логического сложения:
    A A = A;

    Для логического умножения:
    A & A = A.

    Закон означает отсутствие показателей степени.

  7. Законы исключения констант:
    - для логического сложения:
    A 1 = 1, A 0 = A;

    Для логического умножения:
    A & 1 = A, A & 0 = 0.

  8. Закон противоречия:
    A & (не A)= 0.

    Невозможно, чтобы противоречащие высказывания были одновременно истинными.

  9. Закон исключения третьего:
    A (не A) = 1.

    Из двух противоречащих высказываний об одном и том же предмете одно всегда истинно, а второе - ложно, третьего не дано.

  10. Закон поглощения:
    - для логического сложения:
    A (A & B) = A;

    Для логического умножения:
    A & (A B) = A.

  11. Закон исключения (склеивания):
    - для логического сложения:
    (A & B) (& B) = B;

    Для логического умножения:
    (A B) & ( B) = B.

  12. Закон контрапозиции (правило перевертывания):
    (AB) = (BA).

    Справедливость приведенных законов можно доказать табличным способом: выписать все наборы значений А и В, вычислить на них значения левой и правой частей доказываемого выражения и убедиться, что результирующие столбцы совпадут.

Пример. Упростить логическое выражение:

  1. Ефимова О., Морозов В., Угринович Н. Курс компьютерной технологии с основами информатики. Учебное пособие для старших классов. - М.: ООО "Издательство АСТ"; АВF, 2000 г.
  2. Задачник-практикум по информатике. В 2-х томах/Под ред. И.Семакина, Е.Хеннера. - М.: Лаборатория Базовых Знаний, 2001 г.
  3. Угринович Н. Информатика и информационные технологии. 10-11 класс- М.: Лаборатория Базовых Знаний, АО "Московские учебники", 2001 г.

Задачи и тесты по теме "Основы формальной логики"

  • Логика СУБД Access - Логико-математические модели 10 класс

    Уроков: 5 Заданий: 9 Тестов: 1

  • Решение логических задач средствами математической логики

    Уроков: 4 Заданий: 6 Тестов: 1

Уважаемый ученик!

В Работе 1 представлены три темы, лежащие в основе курса "Информационные технологии". Надеемся, что Вы уже имеете минимальный опыт работы с компьютером и познакомились с его устройством еще в средних классах школы.

Тема "Компьютерные коммуникации. Интернет" вызывает большой интерес в последнее время, многие молодые люди проводят в глобальной сети почти все свое свободное время. Хочется напомнить, что виртуозное владение Интернет подразумевает не просто умение "бродить" в сети и посещать время от времени интересные "чат"ы", но и разбираться в принципах организации информации в глобальной сети, разбираться в ее структуре, протоколах, уметь настраивать браузер и почтовые программы, знать и соблюдать этику работы в Интернет. Ну и конечно использовать сеть по самому важному из ее назначений - для расширения своего кругозора.

Мы не рассматривали в этом курсе технологию создания Web-сайтов, полагая, что минимальные знания для создания домашней веб-страницы можно почерпнуть из дополнительной литературы. Создание же сайтов на профессиональном уровне требует определенной подготовки, в основе которой лежат навыки работы с текстом и графикой, а также умение программировать.

Тема "Логика" обычно вызывает некоторое недоумение учащихся, не все понимают важность изучения данной темы. Хочется отметить, что знание логики важно не только как основа для дальнейшего изучения языков программирования и принципов работы с базами данных, но и как "тренажер" для развития особого типа мышления. Человек, преуспевший в изучении логики, имеет огромные преимущества в общении. Очень лестно услышать в свой адрес: "Логично", "в Ваших рассуждениях присутствует логика".

Законы алгебры высказываний

Алгебра высказываний (алгебра логики) - раздел математической логики, изучающий логические операции над высказываниями и правила преобразования сложных высказываний.

При решении многих логических задач часто приходится упрощать формулы, полученные при формализации их условий. Упрощение формул в алгебре высказываний производится на основе эквивалентных преобразований, опирающихся на основные логические законы.

Законы алгебры высказываний (алгебры логики) - это тавтологии.

Иногда эти законы называются теоремами.

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул. Среди законов особо выделяются такие, которые содержат одну переменную.

Первые четыре из приведенных ниже законов являются основными законами алгебры высказываний.

Закон тождества:

А=А

Всякое понятие и суждение тождественно самому себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. При нарушении этого закона возможны логические ошибки.

Например, рассуждение Правильно говорят, что язык до Киева доведет, а я купил вчера копченый язык, значит, теперь смело могу идти в Киев неверно, так как первое и второе слова «язык» обозначают разные понятия.

В рассуждении: Движение вечно. Хождение в школу - движение. Следовательно, хождение в школу вечно слово «движение» используется в двух разных смыслах (первое - в философском смысле - как атрибут материи, второе - в обыденном смысле - как действие по перемещению в пространстве), что приводит к ложному выводу.

Закон непротиворечия :

В один и тот же момент времени высказывание может быть либо истинным, либо ложным, третьего не дано. Истинно либо А, либо не А. Примеры выполнения закона исключенного третьего:

1. Число 12345 либо четное, либо нечетное, третьего не дано.

2. Предприятие работает убыточно или безубыточно.

3. Эта жидкость является или не является кислотой.

Закон исключенного третьего не является законом, признаваемым всеми логиками в качестве универсального закона логики. Этот закон применяется там, где познание имеет дело с жесткой ситуацией: «либо - либо », «истина-ложь ». Там же, где встречается неопределенность (например, в рассуждениях о будущем), закон исключенного третьего часто не может быть применен.

Рассмотрим следующее высказывание: Это предложение ложно. Оно не может быть истинным, потому что в нем утверждается, что оно ложно. Но оно не может быть и ложным, потому что тогда оно было бы истинным. Это высказывание не истинно и не ложно, а потому нарушается закон исключенного третьего.

Парадокс (греч. paradoxos - неожиданный, странный) в этом примере возникает из-за того, что предложение ссылается само на себя. Другим известным парадоксом является задача о парикмахере: В одном городе парикмахер стрижет волосы всем жителям, кроме тех, кто стрижет себя сам. Кто стрижет волосы парикмахеру? В логике из-за ее формальности нет возможности получить форму такого ссылающегося самого на себя высказывания. Это еще раз подтверждает мысль о том, что с помощью алгебры логики нельзя выразить все возможные мысли и доводы. Покажем, как на основании определения эквивалентности высказываний могут быть получены остальные законы алгебры высказываний.

Например, определим, чему эквивалентно (равносильно) А (двойное отрицание А , т. е. отрицание отрицания А ).Для этого построим таблицу истинности:

По определению равносильности мы должны найти тот столбец, значения которого совпадают со значениями столбца А. Таким будет столбец А.

Таким образом, мы можем сформулировать закон двойного отрицания:

Если отрицать дважды некоторое высказывание, то в результате получается исходное высказывание. Например, высказывание А = Матроскин - кот эквивалентно высказыванию А = Неверно, что Матроскин не кот .

Аналогичным образом можно вывести и проверить следующие законы:

Свойства констант:


Законы идемпотентности:

Сколько бы раз мы ни повторяли: телевизор включен или телевизор включен или телевизор включен... значение высказывания не изменится. Аналогично от повторения на улице тепло, на улице тепло,... ни на один градус теплее не станет.

Законы коммутативности:

A v B = B v A

А & В = В & А

Операнды А и В в операциях дизъюнкции и конъюнкции можно менять местами.

Законы ассоциативности:

A v(B v C) = (A v B) v C;

А & (В & C) = (A & В) & С.

Если в выражении используется только операция дизъюнкции или только операция конъюнкции, то можно пренебрегать скобками или произвольно их расставлять.

Законы дистрибутивности:

A v (B & C) = (A v B) &(A v C)

(дистрибутивность дизъюнкции
относительно конъюнкции)

А & (B v C) = (A & B) v (А & C)

(дистрибутивность конъюнкции
относительно дизъюнкции)

Закон дистрибутивности конъюнкции относительно дизъюнкции ана­логичен дистрибутивному закону в алгебре, а закон дистрибутивности дизъюнкции относительно конъюнкции аналога не имеет, он справедлив только в логике. Поэтому необходимо его доказать. Доказательство удобнее всего провести с помощью таблицы истинности:


Законы поглощения:

A v (A & B) = A

A & (A v B) = A

Проведите доказательство законов поглощения самостоятельно.

Законы де Моргана:

Словесные формулировки законов де Моргана:


Мнемоническое правило: в левой части тождества операция отрицания стоит над всем высказыванием. В правой части она как бы разрывается и отрицание стоит над каждым из простых высказываний, но одновременно меняется операция: дизъюнкция на конъюнкцию и наоборот.

Примеры выполнения закона де Моргана:

1) Высказывание Неверно, что я знаю арабский или китайский язык тождественно высказыванию Я не знаю арабского языка и не знаю китайского языка.

2) Высказывание Неверно, что я выучил урок и получил по нему двойку тождественно высказыванию Или я не выучил урок, или я не получил по нему двойку.

Замена операций импликации и эквивалентности

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка программирования. Однако для решения многих задач эти операции необходимы. Существуют правила замены данных операций на последовательности операций отрицания, дизъюнкции и конъюнкции.

Так, заменить операцию импликации можно в соответствии со следующим правилом:

Для замены операции эквивалентности существует два правила:

В справедливости данных формул легко убедиться, построив таблицы истинности для правой и левой частей обоих тождеств.

Знание правил замены операций импликации и эквивалентности помогает, например, правильно построить отрицание импликации.

Рассмотрим следующий пример.

Пусть дано высказывание:

Е = Неверно, что если я выиграю конкурс, то получу приз .

Пусть А = Я выиграю конкурс ,

В = Я получу приз .

Тогда

Отсюда, Е = Я выиграю конкурс, но приз не получу .